Cichoń,
Kutyłowski,
Wolny

Braid Chain Radio Communication

Jacek Cichoń, Mirosław Kutyłowski, Kamil Wolny

Wrocław University of Science and Technology, Poland
Algosensors 2017, Wien

Model

radio network a network consists of nodes communicating via radio channels,
distance bounded communication two nodes can communicate provided that they are close enough
ad hoc the location of nodes can be neither planned nor controlled, in particular the nodes may join and leave the network or change their positions
multi-hop the source and destination nodes are often far away from each other and messages must be processed via intermediate nodes
self-organizing there is no central control, the network must self-organize itself in a distributed way

Braid Chain

Cichoń,
Kutyłowski, Wolny

Problem
network

Model

position each node knows its physical position
network discovery each node knows its neighbors
radio channel(s) there is a number of radio channels (frequency or time separation)
channel assignment we assume that each node is assigned a private input channel (due to multi-hop architecture the same physical channel can be reused at different places)

radio channel assignment

■ intended transmission requests unpredictable

- hybrid network with many independent processes run
$\square \Rightarrow$ orchestrating radio channel requests impossible in the general case

Anti-Collision mechanism

Cai-Lu-Wang algorithm
assume that a node A at time t wishes to send a message:
1 it chooses $r \in[t, t+\Delta]$ at random
2 it probes the radio channel at time r :
2.1 if the channel is busy, then A waits until the end of transmission, and starts a new attempt
2.2 if the channel is not busy, then A starts its own transmission
idea: the node that chooses the smallest r will get access to the channel and start its transmission

Cai-Lu-Wang algorithm

Braid Chain

Cichoń,
Kutyłowski,
Wolny

Failure situation

■ if A checks the channel status at time r, then it may start blocking the channel at time $r+\delta$ where δ is a hardware related delay, $\delta>0$ (!)

- it may happen that another node B checks the channel status at time $t \in(r-\delta, r+\delta)$ and based on its status will start the transmission making a collision with A :
- if $t>r-\delta$, then A does not detect activity of B
- if $t<r+\delta$, then B does not detect activity of A

consequences

- if $\Delta \gg \delta$, then failure probability is negligible
- big Δ results in higher communication latency, e.g. if only one node attempts to transmit, then there is an additional average delay of $\Delta / 2$ per hop

Cai-Lu-Wang algorithm

Braid Chain
Cichoń,
Kutyłowski, Woiny

Problem
network
anti-collision
routing
mulipath
Algorithm
general case
questions
braid chain
Analysis
layer delays
stationary dist ributio rapid mixing layer propagation time

consequences

- if $\Delta \gg \delta$, then failure probability is negligible
\square big Δ results in higher communication latency, e.g. if only one node attempts to transmit, then there is an additional average delay of $\Delta / 2$ per hop

In order to simplify the notation we change the time scale and assume that $\Delta=1$ from now on, and that the collisions do not occur

Routing problem

Which route to choose from A to B ?

- no global view of the network

■ each intermediate node knows only its neighbors and their positions
■ other problems like holes in some areas ...

assumption

the network is dense enough so that transmitting the message to a few nodes closer to the destination eventually enables successful delivery

Cichoń,
Kutyłowski,
Woiny

Risks of a single path

- a single dis-functioning node on a path may disrupt communication
- an adversarial/unfair node may disrupt communication on purpose
- a local congestion may delay transmission
conclusion: to be on the safe side it might be better to route a message via alternative paths

Independent paths

The risk of disruption

- a path where on each hop it may be disrupted with a certain probability will eventually be disrupted
■ having a few independent paths helps but not radically: the expected live path length is a maximum of two random variables
for details see:
Jacek Cichoń and Marek Klonowski.
On flooding in the presence of random faults.
Fundam. Inform., 123(3):273-287, 2013.

Our Algorithm

routing strategy:

$\square m$ is routed only via nodes that are in distance at most d from the line $A B$

- if node C gets m then it forwards it to all such nodes that are closer to the destination
- as conflicts may occur, the nodes follow Cai-Lu-Wang mechanism independently on each connection
d is a parameter that must be set according to nodes' density.

Our Algorithm

Behavior

- ideally, each node should forward m to a few nodes, say k, so that k different intermediate nodes are at each stage
- there are not k independent paths but collective processing
- if at some place a node C fails to forward m, then the following nodes get m from other nodes

Behavior of the algorithms

Braid Chain
Cichoń,
Kutylowski,
Woiny

Problem
network
anticolise
routing
mulipatit
Algorithm
general case
questions

Question

what is the message propagation speed? Delays are due to Cai-Lu-Wang mechanism

Braid chain architecture

Braid Chain
Cichoń,
Kutyłowski,
Wolny

Problem network anti-collision routing mulipath

Algorithm
general case

- there is some number of layers

■ on each intermediate layer there are exactly 2 nodes

- a nodes forwards a message to both nodes on the next layer
(in reality, there might be layers with more than 2 nodes and layers with exactly one node)

Pseudocode

Cichoń,
Kutylowski,
Woiny

Problem

1: start clock
2: Loop
3: if station S_{i} receives a message M at time T then
4: $\quad T_{U}:=T+\operatorname{random}(0,1)$
5: $\quad T_{D}:=T+\operatorname{random}(0,1)$
6: while time not later than $\max \left\{T_{U}, T_{D}\right\}$
7: \quad if the current time is T_{U}
8: \quad if channel for U_{i+1} is free then
9: \quad transmit message M to U_{i+1}
10: if the current time is T_{D}
11: if channel for D_{i+1} is free then
12: \quad transmit message M to D_{i+1}

Observed behavior

Braid Chain
Cichoń,
Kutyłowski,
Woiny

Problem
network
anticollisio
routing
mulipath
Algorithm
general case
quessions
Analysis
Question: CLW delay
On each layer we loose some time to to application of Cai-Lu-Wang mechanism.
In this way, how much we loose in total?

2 independent paths

- at each hop the average CLW delay is $\frac{1}{2}$ (or $\frac{\Delta}{2}$ if we forget time rescaling)
\square this sum up to CLW delay of $\approx \frac{n}{2}$ for a path of length n on each line
- final total CLW delay is a minimum for delays on both paths (minimum of two random variables of average value $\approx \frac{n}{2}$)
■ the variance of these random variables relatively decreases with n, so the final CLW delay $\approx \frac{n}{2}$

braid chain

- simple case: the nodes at the previous layer receive m at the same time:

> A starts receiving m after time t, where $t=$ min $\left(t_{1}, t_{2}\right)$, where t_{1}, t_{2} are independent and uniformly distributed in $[0,1]$

- regular case: the nodes at the previous layer receive m at different times and the time difference is a random variable of an unknown distribution
- this has a significant impact on the final CLW delay

Observed behavior

much faster propagation than in case of 2 independent path

definition

\square let $r_{U_{i}}$ be the time when U_{i} receives M for the first time.

- let $r_{D_{i}}$ be the time when D_{i} receives M for the first time.
$\square d_{i}=\left|r_{U_{i}}-r_{D_{i}}\right|$ is called the layer delay at layer i

Observations

- $d_{i} \leq 1$

■ small d_{j} speeds up transmission as quickly two nodes attempt to forward a message

Layer delays as a Markov process

Markov process

- layer delay on level $i+1$ is a random variable that depends only on layer delay on level i
- given delay at level i, what is the probability distribution for this variable?
- model:

■ x, y, u, v - independent random variables with the uniform distribution over [0, 1]

- we fix $d \in[0,1]$
- we consider random variables X_{d}, Y_{d}, Z_{d} :

$$
X_{d}=\min (x, d+y), \quad Y_{d}=\min (u, d+v), \quad Z_{d}=\left|X_{d}-Y_{d}\right|
$$

Z_{d} is the delay on the next layer

Determining Z_{d}

Braid Chain
Cichoń,
Kutylowski,
Woiny

Problem network antl-colliston
routing
mulfipath
Algorithm
general case
questions
braid chain
Analysis
layer delays
stationary disiributio
rapid mixing layer propagation
time

density of X_{d}, Y_{d}

$$
\operatorname{Pr}\left(X_{d}<z\right)= \begin{cases}z & \text { if } z \in[0, d] \\ (2+d) z-d-z^{2} & \text { if } z \in[d, 1]\end{cases}
$$

after differentiating we get density of X_{d} :

$$
f_{d}(z)= \begin{cases}1 & \text { if } z \in[0, d], \\ 2+d-2 z & \text { if } z \in[d, 1] .\end{cases}
$$

Determining Z_{d}

Braid Chain
Cichoń,
Kutyłowski,
Woiny

Problem
network
ant-collison
routing
mulipath
Algorithtn
general case
questions
braid chain
Analysis
layer delays

$$
k_{d}(x)= \begin{cases}2 f_{U, d}(x) & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Determining Z_{d}

Braid Chain

Cichon,
Kutyłowski, Wolny

Problem
network
anti-coilision
routing
mulfipath
Algorithm
general case
quesions
braid chain.
Analysis
layer delays
stationary distributio

after tedious computations

$$
\begin{array}{ll}
\frac{2}{3}\left(4-3 d+3 d^{2}-d^{3}-3 x+3 d x-3 d^{2} x-3 x^{2}+2 x^{3}\right) & \text { for } d \in\left(0, \frac{1}{2}\right] \wedge x \in[0, d] \\
\frac{2}{3}\left(-d^{3}-3 d^{2} x+3 d^{2}+2 x^{3}-6 x+4\right) & \text { for } d \in\left(0, \frac{1}{2}\right) \wedge x \in[d, 1-d] \\
2+2 d-4 x-2 d x+2 x^{2} & \text { for } d \in\left(0, \frac{1}{2}\right) \wedge x \in[1-d, 1] \\
\frac{2}{3}\left(2-3 x+x^{3}\right) & \text { for } d=0 \\
\frac{2}{3}\left(4-3 d+3 d^{2}-d^{3}-3 x+3 d x-3 d^{2} x-3 x^{2}+2 x^{3}\right) & \text { for } d\left(\in \frac{1}{2}, 1\right) \wedge x \in[0,1-d] \\
2(1-x) & \text { for } d \in\left(\frac{1}{2}, 1\right) \wedge x \in[1-d, d] \\
2+2 d-4 x-2 d x+2 x^{2} & \text { for } d \in\left(\frac{1}{2}, 1\right) \wedge x \in[d, 1] \\
0 & \text { otherwise }
\end{array}
$$

important: on each interval it is a polynomial

Determining Z_{d}

- based on this explicit formula we can derive any moment of random variable Z_{d}
- the most convenient way is to use tools of analytical combinatorics

Stationary distribution of the layer delays

- it is easy to see that the Markov process of layer delays is ergodic and therefore there is a stationary distribution μ
- μ satisfies:

$$
\mu(x)=\int_{0}^{1} \mu(t) k(t, x) d t
$$

where $k(t, x)=k_{t}(x)$ is the just computed density function

■
What is the expected value of μ ?

Braid Chain

Cichoń,
Kutyłowski,
Wolny

Problem
network
anti-collision
routing
mullipath
Algorithm
general case
questions
braid chain
Analysis

$$
\begin{aligned}
\mathbf{E}[\mu] & =\int_{0}^{1} x \mu(x) d x \\
& =\int_{0}^{1} x\left(\int_{0}^{1} \mu(t) k(t, x) d t\right) d x \\
& =\int_{0}^{1} \mu(t)\left(\int_{0}^{1} x k(t, x) d x\right) d t \\
& =\frac{1}{15} \int_{0}^{1}\left(t^{5}-5 t^{3}+5 t^{2}+4\right) \mu(t) d t \\
& =\frac{4}{15}+\frac{1}{15} \int_{0}^{1}\left(t^{5}-5 t^{3}+5 t^{2}\right) \mu(t) d t \\
& =\frac{4}{15}+\frac{1}{15} \int_{0}^{1}\left(t^{5}-5 t^{3}+5 t^{2}\right)\left(\int_{0}^{1} \mu(s) k(s, t) d s\right) d t \\
& =\frac{4}{15}+\frac{1}{15} \int_{0}^{1} \mu(s)\left(\int_{0}^{1}\left(t^{5}-5 t^{3}+5 t^{2}\right) k(s, t) d t\right) d s \\
& =\frac{4}{15}+\frac{1}{15} \frac{110}{378}+\frac{1}{15} \frac{1}{378} \int_{0}^{1} \mu(s) w(s) d s
\end{aligned}
$$

for polynomial $w(s)=10 s^{9}-\ldots+144 s^{2}$

- it works as $k(s, t)$ is piecewise polynomial.
$\square 0 \leqslant w(s) \leqslant 34$ for $s \in[0,1]$, so the last integral can be estimated,
■ ... or one may proceed in exactly the same way in order to get a better precision

Computing expected value of the stationary distribution

Braid Chain
Cichoń,
Kutyłowski,
Woiny

Problem
network
anti-collision
routing

Theorem

Algorithm
general case
questions
braid chain
Analysis
$\mathbf{E}[\mu]=0.286067+\epsilon$, where $0 \leq \epsilon \leq 0.006$,
$\operatorname{Var}[\mu]=0.126981+\delta-(0.286067+\epsilon)^{2}$, where $0 \leq \delta \leq 0.0005$.

Rapid convergence to stationary distribution

- layer delays converge to stationary distribution - a basic fact from Markov chain theory
- however it does not mean automatically that convergence is fast (and have no impact on short braid chains)
- we prove that the layer delays converge rapidly to the stationary distribution

Coupling based analysis

- we use coupling technique
- the proof is so simple that it looks as a joke

Rapid convergence to stationary distribution

Braid Chain
Cichoń,
Kutyłowski,
Woiny

Problem
network
anti-collision
routing
mulipath
Algorithm
general case
questions
braid chain
Analysis

Theorem

For $t>\frac{(-\log \varepsilon+1)}{2-\log 3}$ the variation distance between the distributions μ and d_{t} is at most ε. That is

$$
\frac{1}{2} \int_{0}^{1}\left|\mu(x)-d_{t}(x)\right| d x<\varepsilon
$$

Rapid convergence to stationary distribution

Braid Chain
Cichoń,
Kutyłowski,
Woiny

Problem
network
ant-collision
routing
mulfipath
Algorithm
general case
questions
braid chain
Analysis
layer delays
rapid mixing
dayer propargation
Extensions

A plot of 6 consecutive densities for d_{t} computed numerically according to the formula $k^{(i+1)}(d, x)=\int_{0}^{1} k(z, x) k^{(i)}(d, z) d z$

Assumption

we inspect the expected time for a layer delay based on the assumption that the previous layer delay is distributed according to the stationary distribution

Similar computational tricks as before based on the fact that some functions are piecewise polynomials and that integral of the density function yields 1

Theorem

 the expected time for one transition is ≈ 0.28. (the formulas enable computing this constant with an arbitrary precision)
Reusing techniques

choosing transmission time within Cai-Lu-Wang scheme does not need to be uniform.

■ other choice: exponential distribution (fundamental model for telecommunication)

- similar analytic results obtained (not included in the paper)
- optimizing Cai-Lu Wang? For some other functions impact on the propagation speed evaluated.

More than 2 nodes on a layer in a braid chain

Braid Chain

Cichoń,
Kutyłowski Wolny

Increasing the number of nodes on a layer to k decreases the total CLW delay

- for each $k>2$ we can derive similar formulas as for $k=2$
(their complexity grows with k but they are ok for numerical computations)
- important: the gain tends to decrease - from propagation speed it does not make sense to increase k more than to $3,4, \ldots$ the only motivation might be security

Braid Chain

Cichoń,
Kutyłowski,
Wolny

Problem
network
ant-collision
routing

Thanks for your attention!

Algorithm
general case
quesions
braid chain
Analysis
layer delays
stationary dibiributio
rapid mixing
layer propagation
Extensions

Contact data

1 Miroslaw.Kutylowski@pwr.edu.pl
2 http://cs.pwr.edu.pl

