

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

U-Prove

U-Prove Revocation -FC 2013

U-Prove Revocation

Attack

Attack :

Attack:

Conclusion:

Tracing Attacks on U-Prove with Revocation Mechanism

Lucjan Hanzlik, Przemysław Kubiak, Mirosław Kutyłowski

Wrocław University of Technology, Poland

ACM ASIA CCS 2015, Singapore

Privacy/Personal Data Protection/Anonymity principle of minimal information disclosure

Tracing U-Prove with Revocation

Kutyłowski e al.

Anonymous credentials

Revocation system

U-Prove Revocation FC 2013

U-Prove Revocation MS

Attack

Attack

Attack

Conclusions

traditional systems:

- user identification
- 2 user authentication
- granting rights

security problem:

- identification+authentication secures proper assignment of rights
- but... reveals a lot of data that can be used by a malicious parties

too much information is a security threat ^a

alike writing PIN on an ATM card

Privacy/Personal Data Protection/Anonymity anonymous credentials idea

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

Revocation

U-Prove Revocation

U-Prove Revocation

Attack

Attack

Attack

Conclusions

anonymous credentials idea:

- presenting anonymous credentials
- granting rights

anonymous credential:

- presents chosen attributes of the user
- presents a proof that a trusted party has confirmed these attributes for this user without revealing identity of the person

Anonymous Credential System

Tracing U-Prove with Revocation

Kutyłowski el al.

Anonymous credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack

Conclusions

Issuing a witness

- user interacts with a Trusted Party who can verify the attributes
- the user gets a witness cryptographic data that is used to create credentials

Presenting credentials

- a user takes the witness, and chooses a subset of attributes
- creates a credential on (a formula about) selected attributes

Credentials verification

a verifier takes the credentials and checks that

- the attributes have been confirmed by the Trusted Party
- the formula on the attributes holds

Anonymous Credential System major products

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

Revocation system

U-Prove Revocation FC 2013

U-Prove Revocation MS

Attack

Attack

Conclusions

Products

UProve: Microsoft, based on Brands idea

Idemix: IBM, mainly based on Camenisch, Lysyanskaya

techniques

Problems

- relatively "heavy" computations
- hard to understand
- not really suited for smart cards, only some subprocedures in a secure environment of smart cards
- application scope?

many versions of anonymization possible: a similar product is **Restricted Identification** on German personal identity cards

Revocation Scheme

Tracing U-Prove with Revocation

Kutyłowski el al.

Anonymous credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack

Conclusions

Problem

- a user may loose some attributes
- strong anonymity may enable the user to use the outdated credentials – we have to prevent this, otherwise the system is useless for most practical applications

Revocation Scheme

extra functionality:

the user proves that his attributes have not been revoked by the Revocation Authority

Revocation Challenges

Tracing U-Prove with Revocation

Kutyłowski el al.

Anonymous credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack |

Conclusion

Principles and requirements

- revocation must not reveal identity
- revocation is not a penalty user's privacy has to be protected

Accumulator concept

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack

Conclusions

traditional approach: revocation list

a list of all revoked users

Cryptographic accumulator

a single value, such that

- one can put a value into the accumulator
- one can prove that a given value is not in the accumulator

Presenting credentials with a non-revocation proof

Tracing U-Prove with Revocation

Kutyłowski el al.

Anonymous credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack

Conclusion

a user creates a proof that

- the chosen attributes have been confirmed by the Trusted Party
- they have not been inserted into the accumulator (the current accumulator value is used)

The accumulator is computed and published by a Revocation Authority.

General concept for UProve FC'2013

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack

Conclusions

Paper:

Acar, T., Chow, S.S.M., Nguyen, L.: Accumulators and U-Prove Revocation. Financial Cryptography. LNCS 7859 (2013)

Strategy

- on-top of Uprove as a "plug-in"
- it uses accumulator concept
- it reuses the standard mechanisms of anonymous credentials schemes

Problems FC'2013

Tracing U-Prove with Revocation

Kutyłowski e al.

Anonymou credentials

system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack

Conclusion

Problems

- bilinear mappings used, but standard embedded devices do not support bilinear groups
- 2 complicated
- no formal proof flaws might exists ^a

^alike the one indicated by our FC 2014 paper (already corrected by the authors)

UProve Revocation - Microsoft general assumptions

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

system

U-Prove Revocation -FC 2013

U-Prove Revocation -MS

Attack

Attack

Attack

Conclusions

Main features

- generally the same approach
- however: the bilinear mappings are eliminated^a
- simplifications
- published in technical drafts, versions change
- no security proof, no motivation/justification at all
- support/ good conditions for creating third party products based on UProve

^athis leads to problems

Procedure RSSetup()

Tracing U-Prove with Revocation

al.

Anonymou credentials

system

U-Prove Revocation -FC 2013

U-Prove Revocation -MS

Attack

Attack

Attack

Conclusions

Initialization of the system

Input:

U-Prove parameters:

group G_q of a prime order q

generators g, g_1 , g_t

Computation:

choose $\delta \in \mathbb{Z}_q$ at random

 $K:=g^\delta$

Output: private key δ , public key K

Procedure ComputeAccumulator()

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

Revocatio system

U-Prove Revocation -FC 2013

U-Prove Revocation -MS

Attack

Attack

Attack

Conclusions

Computing the accumulator *V* of revoked users

Input:

RA private key:

 $\delta \in \mathbb{Z}_q$

Revocation parameter:

 g_t

Set of revoked

attribute values:

 $R = \{x_1, \ldots, x_m\} \subseteq \mathbb{Z}_q \setminus \{-\delta\}$

Computation:

Output:

 $V:=g_t^{\prod_{i=1}^m(\delta+x_i)}$

accumulator value V

Procedure ComputeWitness()

Tracing **II-Prove** with Revocation

U-Prove Revocation -

Creating a witness by the system

Input:

RA private key:

Revocation parameter:

List of revoked attribute values:

Target user's revocation attri-

bute:

Current accumulator:

 $\delta \in \mathbb{Z}_a$

 g_t

 $R = \{x_1, \ldots, x_m\} \in \mathbb{Z}_q \setminus \{-\delta\}$

 $x_{id} \notin R$

 $V \in G_{\alpha}$

Computation:

 $d := \prod_{x \in B} (x - x_{id}) \mod q$

 $W := g_t^{(\prod_{x \in R}(\delta+x)-d)/(\delta+x_{id})}$

 $Q := VW^{-x_{id}}g_{t}^{-d}$

Output:

Revocation witness for target user holding x_{id} :

(d, W, Q)

Procedure UpdateWitness () - updating the witness by the user himself

Tracing **II-Prove** with Revocation

U-Prove Revocation -

Output:

```
Input:
Revocation parameter:
                                               g_t \in G_a
The revocation attribute of the user:
                                               Xid
Revocation attribute to be added
                                               \mathbf{x}'
or removed from R:
Boolean value indicating whether x'
                                               add
has to be added to B.
Old accumulator:
                                               V \in G_a
                                               (d, W, Q)
Old witness of the user holding x_{id}:
                                               V' \in G_a
Updated accumulator:
Computation: if add = true
                                               (x') added to R
     d' := d(x' - x_{id}) \mod q
     W' := VW^{x'-x_{id}}
     Q' := V'W'^{-x_{id}}g_t^{-d'}
                                               (x' \text{ removed from } R)
else
              updated witness (d', W', Q') for x_{id}
```


 $Q' := V'W'^{-x_{id}}g_t^{-d'}$

Output: updated witness (d', W', Q') for x_{id}

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

Revocatio system

U-Prove Revocation -FC 2013

U-Prove Revocation -MS

Attack

Attack

Attack 3

Conclusion:

Input: Revocation parameter: $g_t \in G_a$ The revocation attribute of the user: X_{id} Revocation attribute to be added \mathbf{x}' or removed from R: Boolean value indicating whether x'add has to be added to R: $V \in G_q$ Old accumulator: Old witness of the user holding x_{id} : (d, W, Q)Updated accumulator: $V' \in G_{\alpha}$ Computation: if add = true (x') added to R(x')else (x' removed from R) $d' := d(x' - x_{id})^{-1} \mod q$ $W' := ((V')^{-1}W)^{(x'-x_{id})^{-1}}$

Procedure GenerateNonRevocationProof() - a user proves to be not revoked

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation -MS

Attack ⁻

Апаск

Attack 3

Conclusions

Input:

Revocation parameters: G_q , hash function \mathcal{H} , g, g_1 , g_t

Commitment to x_{id} : \tilde{c}_{id} , where $\tilde{c}_{id} = g^{x_{id}}g^{\tilde{b}_{id}}$

Opening information: x_{id} , \tilde{o}_{id} RA public key: K

Revocation witness: (d, W, Q)

Computation:

generate $t_1, t_2, k_1, \ldots, k_6 \in \mathbb{Z}_q$ at random

 $X := Wg^{t_1}$ $Y := QK^{t_1}$ $W := d^{-1}$ M

 $C_d := g_t^d g_1^{t_2}$ $w := d^{-1} \mod q$ $z := t_1 \tilde{o}_{id} - t_2 \mod q$ $z' := -t_2 w \mod q$

 $T_1 := X^{k_1} (\tilde{c}_{id} K)^{-k_2} g_1^{k_3}, \qquad T_2 := g^{k_1} g_1^{k_4}, T_3 := C_a^{k_5} g_1^{k_6}$ $c' := \mathcal{H}(g, g_1, g_1, K, \tilde{c}_{id}, X, Y, C_d, T_1, T_2, T_3)$

 $egin{array}{ll} egin{array}{ll} egi$

 $s_5 := -c'w + k_5 \mod q$ $s_6 := -c'z' + k_6 \mod q$ delete $t_1, t_2, k_1, \dots, k_6, w, z, z', T_1, T_2, T_3$

Output:

non-revocation proof for x_{id} : $(c', s_1, \ldots, s_6, X, Y, C_d)$

Procedure VerifyNonRevocationProof()

Tracing U-Prove with Revocation

Kutyłowski et

Anonymous credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation -MS

Attack

Attack

Attack

Conclusions

verification of the NonRevocationProof

Input:

Revocation parameters:

 G_q , \mathcal{H} , g, g_1 , g_t

Commitment to x_{id} : \tilde{c}_{id}

Non-revocation proof: $c', s_1, \ldots, s_6, X, Y, C_d$

Revocation Authority public key: KRevocation Authority private key: δ Revocation accumulator: V

Computation:

$$T_1 := (VY^{-1}(C_d)^{-1})^{c'}X^{s_1}(\tilde{c}_{id}K)^{-s_2}g_1^{s_3}$$

$$T_2 := \tilde{c}_{id}^{c'} g^{s_1} g_1^{s_4}$$

$$T_3 := g_t^{c'}(C_d)^{s_5}g_1^{s_6}$$

verify that $c' = \mathcal{H}(g, g_1, g_t, K, \tilde{c}_{id}, X, Y, C_d, T_1, T_2, T_3)$

verify that $Y = X^{\delta}$

Procedure VerifyNonRevocationProof()

Tracing **II-Prove** with Revocation

U-Prove Revocation -

problems with verification of $Y = X^{\delta}$

- \bullet is known neither to the prover not to the verifier so it cannot be checked directly
- $K = g^{\delta}$ as well, so is there is a workaround, then we can solve the equality of discrete logarithms problem.
- for bilinear groups it would be easy

Solution

the equality $Y = X^{\delta}$ is checked by the Revocation Authority holding the key δ .

Disadvantages

- the system is not distributed one anymore
- RA gets traffic data
- potentially RA may recognize each single user while the primary goal was to hide the identity of the user

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymou credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack 1

Attack

Attack

Conclusions

Overall idea

- Revocation Authority manipulates some parameters or data
- 2 ... so that nobody can see the difference
- but any time when the verifier presents X, Y for checking that $X^{\delta} = Y$, the Revocation authority learns who presents the credentials to this verifier

fully automatic Big Brother on large scale

attack 1: Creating a corrupted initial witness

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack 1

Attack

Attack

Conclusions

Input:

RA private key: $\delta \in \mathbb{Z}_q$

Revocation parameter: g_t

List of revoked attribute values: R

New user's revocation attribute: $x_{id} \notin R$

Current accumulator: V

Auxiliary database: \mathcal{T}

Computation:

1. compute d and W via ComputeWitness for R and x_{id}

2. choose u at random

3. $\underline{d} := d + \underline{u} \mod q$

4. $\underline{Q} := VW^{-x_{id}}g_t^{-\underline{d}}$

Output:

insert (g_t^u, x_{id}) in the database \mathcal{T} give (d, W, Q) to the user holding x_{id}

UProve Revocation attack 1: verification of *X*, *Y*

Tracing U-Prove with Revocation

Kutyłowski e al.

Anonymou credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack 1

Attack

Attack

Conclusion:

Revocation Authority gets *X*, *Y* for which:

$$X^{\delta} = W^{\delta}g^{t_1\delta} = QK^{t_1} = \underline{Q}g^u_tK^{t_1} = Yg^u_t \neq Y$$
.

Revocation Authority searches for an entry (Z, x_{id}) such that $X^{\delta} = YZ$.

- If there is one, then the answer is correct and as a side effect the Revocation Authority learns x_{id} .
- Otherwise, the answer is false.

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack 1

Attack

Attack :

Conclusions

how to compute (Q_1, W_1, d_1) from (manipulated) (Q, W, d)?

■ According to UpdateWitness <u>d</u>1, the new value of the parameter d, equals

$$\underline{d_1} = \underline{d}(x' - x_{id}) = (d + u)(x' - x_{id}) = d_1 + u(x' - x_{id})$$

where $d_1 = d(x' - x_{id})$ is the correct value for the correct initial witness.

- W will updated correctly since no manipulated value is applied for the update.
- The new value of Q equals

$$Q_1 = VW^{-x_{id}}g_t^{-\frac{d_1}{d}} = VW^{-x_{id}}g_t^{-d_1-u(x'-x_{id})} = Q_1g_t^{-u(x'-x_{id})},$$

where Q_1 is the value of Q computed for the correct d_1 .

If the verifier presents a pair (X, Y) created by the user holding x_{id} , then

$$X^{\delta} = W_1^{\delta} g_t^{t_1 \delta} = Q_1 K^{t_1} = Q_1 g_t^{u(x'-x_{id})} K^{t_1} = Y g_t^{u(x'-x_{id})}.$$

Defense

Tracing U-Prove with Revocation

Kutyłowski e al.

Anonymou credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack 1

Attack

Attack

Conclusions

learn the IDs of all revoked users

... and compute the witness yourself

the MS technical draft suggests that the revocation attributes of the revoked users can be hidden:

If the revocation list is secret, or for better efficiency, the witnesses are computed by the Revocation Authority . . .

Moreover, initially the set of revoked users may be large and complicated (artificial users due to system testing and initialization).

Solution

see IACR eprint 108/2015: idea+implementation

Tracing U-Prove with Revocation

Kutyłowski el al.

Anonymous credentials

Revocation system

U-Prove Revocation -

U-Prove Revocation MS

Attack

Attack 2

Attack

Conclusions

Main properties

- compute the witnesses according to the specification
- lacksquare .. but manipulate K: now $K=g^{ ilde{\delta}}$ where $ilde{\delta}
 eq \delta$
 - \blacksquare but still use δ for accumulator, witnesses, ...
 - lacksquare recognizing that $K
 eq g^\delta$ would require solving DDH Problem
- there are many elements depending on δ that potentially could disclose a deviation from the protocol nevertheless the users cannot see any difference

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymou credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack 2

Attack

Conclusions

Main points

- $K = g^{\tilde{\delta}}$
- now Revocation Authority gets X and Y such that in general $X^{\delta} \neq Y$
- Revocation Authority computes

11
$$\widetilde{W} := Y \cdot X^{-\tilde{\delta}}$$
.
(then $\widetilde{W} = Q \cdot W^{-\tilde{\delta}} = W^{\delta - \tilde{\delta}}$.)

2 check $W \stackrel{?}{=} \widetilde{W}^{\eta}$, where $\eta = (\delta - \widetilde{\delta})^{-1} \mod q$ and W has been obtained for no-manipulated calculations and a tested concrete revocation attribute x_{id}

Tracing U-Prove with Revocation

Kutyłowski e al.

Anonymou credentials

Revocatio

U-Prove

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack 2

Attack

Conclusion:

Patch

request a proof of equality of discrete logarithms

– the same δ must be used at different places

unfortunately, the attacker can create a more involved attack

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack 3

Conclusions

Manipulations on *V*

- \blacksquare use $\delta := (\alpha_1 + \alpha_2) \cdot 2^{-1} \mod q$
- For i = 0, 1, 2, ... let:

$$\Lambda_i := g_t^{(lpha_1^i + lpha_2^i) \cdot 2^{-1} mod q} \quad ext{and} \quad \Delta_i := g_t^{\delta^i} \;.$$

the regular computation:

$$V = \prod_{i=0}^{m} (\Delta_i)^{a_i}$$

where

$$\prod_{i=1}^{m} (\delta + x_i) = \sum_{i=0}^{m} a_i \cdot \delta^i$$

attack: take

$$V = \prod_{i=0}^{m} (\Lambda_i)^{a_i}$$

Tracing U-Prove with Revocation

Kutyłowski el al.

Anonymou credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack 3

Conclusions

key property:

the updates of the witnesses are consistent with the manipulated accumulator no matter who makes updates:

- Revocation Authority
- the users themselves

tracing:

It turns out that X^{δ}/Y can be recomputed with α_1, α_2 and the x_{id} of the user issuing non-revocation proof — a quite technical and tedious proof

Patches?

a proof of correctness of *V* the proof length is linear in the number of revoked users??

Conclusions

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymous credentials

Revocatio system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack

Conclusions

Lesson learnt

- the procedures must be fully specified under-specification enables creating malicious systems with insecurity-by-design
- serious problems with UProve Revocation system as specified by MS
 - ⇒ many patches necessary, no efficient patch for the last attack in case of a large scale system
 - the system more and more complicated
 - a complicated system is more vulnerable as it is easier to overlook attack scenarios,
 - ⇒ no serious analysis as it is costly, time-consuming, boring, unattractive for academia, less effective than marketing propaganda . . .
- maybe UProve revocation should backtrack to FC'2013 solution by Acar, Chow, Nguyen (with bilinear mappings)

Tracing U-Prove with Revocation

Kutyłowski et al.

Anonymou credentials

Revocation system

U-Prove Revocation -FC 2013

U-Prove Revocation MS

Attack

Attack

Attack

Conclusions

Thanks for your attention!

Contact data

- 1 Miroslaw.Kutylowski@pwr.edu.pl
- 2 http://kutylowski.im.pwr.edu.pl
- 3 http://ki.pwr.edu.pl