
Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Tracing Attacks on U-Prove with Revocation
Mechanism

Lucjan Hanzlik, Przemysław Kubiak,
Mirosław Kutyłowski

Wrocław University of Technology, Poland

ACM ASIA CCS 2015, Singapore

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Privacy/Personal Data Protection/Anonymity
principle of minimal information disclosure

traditional systems:
1 user identification
2 user authentication
3 granting rights

security problem:
identification+authentication secures proper
assignment of rights
but... reveals a lot of data that can be used by a
malicious parties

too much information is a security threat a

alike writing PIN on an ATM card

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Privacy/Personal Data Protection/Anonymity
anonymous credentials idea

anonymous credentials idea:
1 presenting anonymous credentials
2 granting rights

anonymous credential:
presents chosen attributes of the user
presents a proof that a trusted party has confirmed
these attributes for this user without revealing identity
of the person

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Anonymous Credential System

Issuing a witness

user interacts with a Trusted Party who can verify the attributes

the user gets a witness – cryptographic data that is used to create
credentials

Presenting credentials

a user takes the witness, and chooses a subset of attributes

creates a credential on (a formula about) selected attributes

Credentials verification

a verifier takes the credentials and checks that

the attributes have been confirmed by the Trusted Party

the formula on the attributes holds

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Anonymous Credential System
major products

Products

UProve: Microsoft, based on Brands idea

Idemix: IBM, mainly based on Camenisch, Lysyanskaya
techniques

Problems

relatively “heavy” computations

hard to understand

not really suited for smart cards, only some subprocedures
in a secure environment of smart cards

application scope?

many versions of anonymization possible: a similar product is
Restricted Identification on German personal identity cards

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Revocation Scheme

Problem
a user may loose some attributes
strong anonymity may enable the user to use the
outdated credentials – we have to prevent this,
otherwise the system is useless for most practical
applications

Revocation Scheme
extra functionality:

the user proves that his attributes have not been
revoked by the Revocation Authority

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Revocation Challenges

Principles and requirements
revocation must not reveal identity
revocation is not a penalty - user’s privacy has to be
protected

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Accumulator concept

traditional approach: revocation list
a list of all revoked users

Cryptographic accumulator
a single value, such that

one can put a value into the accumulator
one can prove that a given value is not in the
accumulator

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Presenting credentials with a non-revocation
proof

a user creates a proof that
1 the chosen attributes have been confirmed by the

Trusted Party
2 they have not been inserted into the accumulator

(the current accumulator value is used)

The accumulator is computed and published by a
Revocation Authority.

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

General concept for UProve
FC’2013

Paper:
Acar, T., Chow, S.S.M., Nguyen, L.: Accumulators and
U-Prove Revocation. Financial Cryptography. LNCS 7859
(2013)

Strategy
on-top of Uprove as a “plug-in”
it uses accumulator concept
it reuses the standard mechanisms of anonymous
credentials schemes

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Problems
FC’2013

Problems
1 bilinear mappings used, but standard embedded

devices do not support bilinear groups
2 complicated
3 no formal proof – flaws might exists a

alike the one indicated by our FC 2014 paper (already corrected by the
authors)

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation -Microsoft
general assumptions

Main features
generally the same approach
however: the bilinear mappings are eliminateda

simplifications
published in technical drafts, versions change
no security proof, no motivation/justification at all
support/ good conditions for creating third party
products based on UProve

athis leads to problems

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
Procedure RSSetup()

Initialization of the system

Input:
U-Prove parameters: group Gq of a prime order q

generators g, g1, gt

Computation:
choose δ ∈ Zq at random
K := gδ

Output: private key δ, public key K

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
Procedure ComputeAccumulator()

Computing the accumulator V of revoked users

Input:
RA private key: δ ∈ Zq
Revocation parameter: gt
Set of revoked
attribute values: R = {x1, . . . , xm} ⊆ Zq\{−δ}
Computation:

V := g
∏m

i=1(δ+xi)
t

Output: accumulator value V

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
Procedure ComputeWitness()

Creating a witness by the system

Input:
RA private key: δ ∈ Zq

Revocation parameter: gt

List of revoked attribute values: R={x1, . . . , xm}∈Zq\{−δ}
Target user’s revocation attri-
bute:

xid 6∈ R

Current accumulator: V ∈ Gq

Computation:
d :=

∏
x∈R(x − xid) mod q

W := g
(
∏

x∈R (δ+x)−d)/(δ+xid)

t

Q := VW−xid g−d
t

Output:
Revocation witness for target
user holding xid :

(d ,W ,Q)

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
Procedure UpdateWitness() - updating the witness by the user himself

Input:
Revocation parameter: gt ∈ Gq

The revocation attribute of the user: xid

Revocation attribute to be added
or removed from R: x ′

Boolean value indicating whether x ′

has to be added to R:
add

Old accumulator: V ∈ Gq

Old witness of the user holding xid : (d ,W ,Q)
Updated accumulator: V ′ ∈ Gq

Computation: if add = true (x ′ added to R)
d ′ := d(x ′ − xid) mod q
W ′ := VW x′−xid

Q′ := V ′W ′−xid g−d′
t

else (x ′ removed from R)
. . .
Output: updated witness (d ′,W ′,Q′) for xid

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
Procedure UpdateWitness() — updating the witness by the user
himself

Input:
Revocation parameter: gt ∈ Gq

The revocation attribute of the user: xid

Revocation attribute to be added
or removed from R: x ′

Boolean value indicating whether x ′

has to be added to R:
add

Old accumulator: V ∈ Gq

Old witness of the user holding xid : (d ,W ,Q)
Updated accumulator: V ′ ∈ Gq

Computation: if add = true (x ′ added to R)
. . .

else (x ′ removed from R)
d ′ := d(x ′ − xid)

−1 mod q
W ′ := ((V ′)−1W)(x

′−xid)
−1

Q′ := V ′W ′−xid g−d′
t

Output: updated witness (d ′,W ′,Q′) for xid

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
Procedure GenerateNonRevocationProof() - a user proves to be not
revoked

Input:
Revocation parameters: Gq , hash function H, g, g1, gt

Commitment to xid : c̃id , where c̃id = gxid gõid
1

Opening information: xid , õid

RA public key: K
Revocation witness: (d ,W ,Q)

Computation:
generate t1, t2, k1, . . . , k6 ∈ Zq at random
X := Wgt1 Y := QK t1

Cd := gd
t gt2

1 w := d−1 mod q
z := t1õid − t2 mod q z′ := −t2w mod q
T1 := X k1(c̃id K)−k2 gk3

1 , T2 := gk1 gk4
1 , T3 := Ck5

d gk6
1

c′ := H(g, g1, gt ,K , c̃id ,X ,Y ,Cd ,T1,T2,T3)
s1 := −c′xid + k1 mod q s2 := −c′t1 + k2 mod q
s3 := −c′z + k3 mod q s4 := −c′õid + k4 mod q
s5 := −c′w + k5 mod q s6 := −c′z′ + k6 mod q
delete t1, t2, k1, ..., k6,w , z, z′,T1,T2,T3

Output:
non-revocation proof for xid : (c′, s1, . . . , s6,X ,Y ,Cd)

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
Procedure VerifyNonRevocationProof()

verification of the NonRevocationProof

Input:
Revocation parameters: Gq , H, g, g1, gt

Commitment to xid : c̃id

Non-revocation proof: c′, s1, . . . , s6,X ,Y ,Cd

Revocation Authority public key: K
Revocation Authority private key: δ
Revocation accumulator: V
Computation:
T1 := (VY−1(Cd)

−1)c′X s1(c̃id K)−s2 gs3
1

T2 := c̃c′
id gs1 gs4

1

T3 := gc′
t (Cd)

s5 gs6
1

verify that c′ = H(g, g1, gt ,K , c̃id ,X ,Y ,Cd ,T1,T2,T3)
verify that Y = X δ

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
Procedure VerifyNonRevocationProof()

problems with verification of Y = X δ

δ is known neither to the prover not to the verifier
so it cannot be checked directly

K = gδ as well, so is there is a workaround, then we can solve the
equality of discrete logarithms problem.

for bilinear groups it would be easy

Solution

the equality Y = X δ is checked by the Revocation Authority holding the
key δ.

Disadvantages

the system is not distributed one anymore

RA gets traffic data

potentially RA may recognize each single user
while the primary goal was to hide the identity of the user

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
attack mechanism

Overall idea
1 Revocation Authority manipulates some parameters or

data
2 ... so that nobody can see the difference
3 but any time when the verifier presents X ,Y for

checking that X δ = Y , the Revocation authority learns
who presents the credentials to this verifier

fully automatic Big Brother on large scale

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
attack 1: Creating a corrupted initial witness

Input:
RA private key: δ ∈ Zq

Revocation parameter: gt

List of revoked attribute values: R
New user’s revocation attribute: xid 6∈ R
Current accumulator: V
Auxiliary database: T

Computation:
1. compute d and W via ComputeWitness for R and xid

2. choose u at random
3. d := d+u mod q
4. Q := VW−xid g−d

t
Output:

insert (gu
t , xid) in the database T

give (d ,W ,Q) to the user holding xid

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
attack 1: verification of X , Y

Revocation Authority gets X , Y for which:

X δ = W δgt1δ = QK t1 = Qgu
t K t1 = Ygu

t 6= Y .

Revocation Authority searches for an entry (Z , xid) such that
X δ = YZ .

If there is one, then the answer is correct and as a
side effect the Revocation Authority learns xid .
Otherwise, the answer is false.

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
attack 1

how to compute (Q1,W1, d1) from (manipulated) (Q,W , d)?

According to UpdateWitness d1, the new value of the parameter
d , equals

d1 = d(x ′ − xid) = (d + u)(x ′ − xid) = d1 + u(x ′ − xid)

where d1 = d(x ′ − xid) is the correct value for the correct initial
witness.

W will updated correctly since no manipulated value is applied for
the update.

The new value of Q equals

Q1 = VW−xid g
−d1
t = VW−xid g−d1−u(x′−xid)

t = Q1g−u(x′−xid)
t ,

where Q1 is the value of Q computed for the correct d1.

If the verifier presents a pair (X ,Y) created by the user holding xid , then

X δ = W δ
1 gt1δ

t = Q1K t1 = Q1gu(x′−xid)
t K t1 = Ygu(x′−xid)

t .

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Defense

learn the IDs of all revoked users
... and compute the witness yourself

the MS technical draft suggests that the revocation
attributes of the revoked users can be hidden:

If the revocation list is secret, or for better
efficiency, the witnesses are computed by the
Revocation Authority . . .

Moreover, initially the set of revoked users may be large and
complicated (artificial users due to system testing and
initialization).

Solution
see IACR eprint 108/2015: idea+implementation

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
attack 2

Main properties
compute the witnesses according to the specification

.. but manipulate K : now K = g δ̃ where δ̃ 6= δ

but still use δ for accumulator, witnesses, ...
recognizing that K 6= gδ would require solving DDH
Problem

there are many elements depending on δ that
potentially could disclose a deviation from the protocol -
nevertheless the users cannot see any difference

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
attack 2

Main points

K = g δ̃

now Revocation Authority gets X and Y such that in
general X δ 6= Y
Revocation Authority computes

1 W̃ := Y · X−δ̃.
(then W̃ = Q ·W−δ̃ = W δ−δ̃.)

2 check W ?
= W̃ η, where η = (δ − δ̃)−1 mod q and W has

been obtained for no-manipulated calculations and a
tested concrete revocation attribute xid

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
attack 2

Patch
request a proof of equality of discrete logarithms
– the same δ must be used at different places

unfortunately, the attacker can create a more involved attack

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
attack 3

Manipulations on V

use δ := (α1 + α2) · 2−1 mod q

For i = 0,1,2, . . . let:

Λi := g(αi
1+αi

2)·2
−1 mod q

t and ∆i := gδi

t .

the regular computation:

V =
∏m

i=0(∆i)
ai

where ∏m
i=1(δ + xi) =

∑m
i=0 ai · δi

attack: take
V =

∏m
i=0(Λi)

ai

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

UProve Revocation
attack 3

key property:
the updates of the witnesses are consistent with the
manipulated accumulator no matter who makes updates:

Revocation Authority
the users themselves

tracing:

It turns out that X δ/Y can be recomputed with α1, α2 and
the xid of the user issuing non-revocation proof
– a quite technical and tedious proof

Patches?
a proof of correctness of V
the proof length is linear in the number of revoked users??

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Conclusions

Lesson learnt

the procedures must be fully specified – under-specification
enables creating malicious systems with insecurity-by-design

serious problems with UProve Revocation system as specified
by MS

⇒ many patches necessary, no efficient patch for the last attack
in case of a large scale system

⇒ the system more and more complicated
⇒ a complicated system is more vulnerable as it is easier to

overlook attack scenarios,
⇒ no serious analysis as it is costly, time-consuming, boring,

unattractive for academia, less effective than marketing
propaganda . . .

maybe UProve revocation should backtrack to FC’2013 solution by
Acar, Chow, Nguyen (with bilinear mappings)

Tracing
U-Prove with
Revocation

Kutyłowski et
al.

Anonymous
credentials

Revocation
system

U-Prove
Revocation -
FC 2013

U-Prove
Revocation -
MS

Attack 1

Attack 2

Attack 3

Conclusions

Thanks for your attention!

Contact data
1 Miroslaw.Kutylowski@pwr.edu.pl

2 http://kutylowski.im.pwr.edu.pl

3 http://ki.pwr.edu.pl

Miroslaw.Kutylowski@pwr.edu.pl
http://kutylowski.im.pwr.edu.pl
http://ki.pwr.edu.pl

	Anonymous credentials
	Revocation system
	U-Prove Revocation - FC 2013
	U-Prove Revocation - MS
	Attack 1
	Attack 2
	Attack 3
	Conclusions

