Adaptive Initialization Algorithm for Ad Hoc Radio Networks with Carrier Sensing

Jacek Cichoń Mirosław Kutyłowski Marcin Zawada

Institute of Mathematics and Computer Science
Wrocław University of Technology
Poland
ALGOSENSORS, July 2006

DELAS
 Dynamically Evolving, Large-scale Information Systems

(1) Introduction

History
Nakano-Olariu solutions
(2) Our solution

Known number of stations
Unknown number of stations
(3) Future works

First new results
New technology required

Known solutions

- Nakano-Olariu (2000)
- Known number of stations: without delay of signal propagation Time: $e \cdot n+O(\sqrt{n \log n})$
- Unknown number of stations

Time: $\frac{10}{3} \cdot n+O(\sqrt{n \log n})$

- Cai-Lu-Wang (2003) : with delay of signal propagation
- Known number of stations
- Unknown number of stations

Probability at least $1-\frac{1}{n}$. Time complexity of Cai-Lu-Wang algorithms are better than of Nakano-Olariu ones - will be discussed later.

Nakano - Olariu algorithm

Known number of stations

There are n stations. Time is divided into small slots.
(1) Put $k=0$.
(2) Each station tries to transmit with probability $p=\frac{1}{n-k}$. If only one station chooses a given slot then it is a winner. Repeat this until there is a winner.
(3) Put $k=k+1$ and goto step 2

We should play e $n+O(\sqrt{n \log n})$ times if we want each station to win in some slot.

Nakana - Olariu algorithm

There are n stations. They are divided into groups. If only one station is in the group it is a winner. If not, then each station from the group flips a coin with probability $\frac{1}{2}$ and according to the result goes into a subgroup.

We should play $\frac{10}{3} \cdot n+O(\sqrt{n \log n})$ times if we want each station to win in some slot (with probability at least $1-\frac{1}{n}$).

Introduction

Known number of stations

Sketch of algorithm

Fix probability p and divide time into small slots
Basic idea
(1) in each slot each station with probability p choose a random time t
(2) if channel is idle then station starts transmission
(3) if in time interval $[t, t+\delta]$ there is no collision its $I d$ is the slot number and transmit to the end of slot; else stop transmission
(4) go to the next slot with remaining stations

What is the optimal probability p^{*} ?

Known number of stations

Good configurations

The following two situations are good in a slot:

(δ is the normalized delay). How to estimate the probability? We consider a discretization of this problem:

○○○○○○○○○○○•○○•○○○○○○•○○○•○○•○•○○○○○○○○○•○○○○○○○○○

Analysis

Known number of stations

Combinatorial classes

We use the technology of combinatorial classes:

$$
S(\circ) \times\left(\bullet \times S_{<D}(\circ)\right)^{a} \times\left(\bullet \times S_{\geq D}(\circ)\right)^{2} \times(\bullet \times S(\circ))^{n-2-a}
$$

Its generating function is $F_{a}(z)=\frac{\left(1-z^{D}\right)^{a} z^{2 D} z^{n}}{(1-z)^{n+1}}$. Binomial identities, Stirling numbers, going back to continuous model:

Theorem

$P[$ success $] \approx 2(1-\delta)^{n}-(1-2 \delta)^{n}$

Known number of stations

Adding flexibility

Now: each station transmits in a slot with probability $p=\frac{a}{n}$. Then

$$
P[\text { success }] \geq 2\left(1-\frac{\delta a}{n}\right)^{n}-\left(1-\frac{2 \delta a}{n}\right)^{n}-\left(1-\frac{a}{n}\right)^{n} .
$$

Using Chernoff bound we get

Theorem

If $a \approx \ln \left(\frac{1}{2 \delta^{2}}\right)-\ln \ln \left(\frac{1}{2 \delta^{2}}\right)$ then after $\frac{1}{1-\delta^{2}} n+O(\sqrt{n \ln n})$ slots each station transmit with probability at least $1-\frac{1}{n}$.

Known number of stations

Comparison

CLW: Cai-Lu-Wang algorithm CKZ: Cichon-Kutylowski-Zawada algorithm

λ	$C L W(2003)$	CKZ (2006)
0.00001	$1.0177 \cdot n$	$1.00088 \cdot n$
0.0001	$1.0500 \cdot n$	$1.00400 \cdot n$
0.001	$1.1500 \cdot n$	$1.01900 \cdot n$

Time complexity of the old solution of Nakama and Olariu was about $2.781 \cdot n$

Introduction

Unknown number of stations

Sketch of algorithm

Fix probability p.
Basic idea
(1) while there are stations without identifiers
(2) all stations flip a coin with probability of success p
(3) we repeat (3) until all are losers
(4) all stations from last but one stage are winners; they use strategy from our previous algorithm (stage 2)
5 go back to (2) with remaining stations
What is the optimal probability p^{*} ?

Unknown number of stations

What we need to calculate

Main steps of analysis

(1) the number of winners $Y(n)$

Unknown number of stations

What we need to calculate

Main steps of analysis

(1) the number of winners $Y(n)$
(2) the length of each main round $T(n)$

Unknown number of stations

What we need to calculate

Main steps of analysis
(1) the number of winners $Y(n)$
(2) the length of each main round $T(n)$
(3) the number of collisions in second stage $L(n)$

Unknown number of stations

What we need to calculate

Main steps of analysis
(1) the number of winners $Y(n)$
(2) the length of each main round $T(n)$
(3) the number of collisions in second stage $L(n)$
4. the total number of additional slots $H(n)=T(n)+L(Y(n))$

Analysis

Unknown number of stations

Number of winners

Theorem

Let $Y(n)$ be the number of winners where n is the number of stations. Then

$$
E[Y(n)]=\frac{n(1-p)}{p \ln (1 / p)}\left(\frac{1}{n}+2 \sum_{k=1}^{\infty} \Re\left[B\left(n, 1+\frac{2 k \pi i}{\ln (p)}\right)\right]\right)
$$

where

$$
B(n, z)=\frac{\Gamma(n) \Gamma(z)}{\Gamma(n+z)}
$$

Unknown number of stations

Example of proof

Proof.

(1) show that $E[Y(n)]=\frac{n(1-p)}{p \ln (1 / p)} \sum_{k=0}^{n-1}\binom{n-1}{k}(-1)^{k} \frac{1}{1-p^{k-1}}$;
(2) define function $f(z)=\frac{1}{1-p^{-z+1}}$;
(3) show that $E[Y(n)]=\sum_{k=0}^{n} \operatorname{Res}[B(n, z) f(z) \mid z=-k]$;
(4) use Cauchy Theorem and do some reductions to finish the proof;
$\operatorname{Res}[g(z) \mid z=a]$ denotes the residuum of $g(z)$ at the point a.

Unknown number of stations

Residues

$z=|B(2, z) f(z)|$

Additional useful calculations

Let $z_{k}=1+\frac{2 k \pi i}{\ln (p)}$. In further calculations we need to know $\operatorname{Res}\left[B(n, z) f(z) \mid z=z_{k}\right]$
(1) $\operatorname{Res}\left[B(n, z) f(z) \mid z=z_{0}\right]=\frac{1}{n \ln (p)}$
(2) $\operatorname{Res}\left[B(n, z) f(z) \mid z=z_{k}\right]=\frac{\Gamma(n) \Gamma\left(z_{k}\right)}{\Gamma\left(n+z_{k}\right) \ln (p)}$ if $k \neq 0$

Unknown number of stations

Theorem

Let $T(n)$ be a random variable denoting the number of rounds such that the number of winners becomes 0 , when we start with n winners. Then

$$
\mathrm{E}[T(n)]=\frac{1}{2}+\frac{H_{n}}{\log (1 / p)}+\frac{2}{\log (1 / p)} \sum_{k=1}^{\infty} \Re\left[\mathrm{B}\left(n+1, \frac{2 k \pi i}{\log (p)}\right)\right]
$$

where $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is the n-th harmonic number.

Unknown number of stations

Number of wasted slots

Theorem

Let $E[L(Y(n))]$ be the number of slots in the second round where two stations transmit. Then $E[L(Y(n))] \frac{\ln (1 / p)}{n(1-p)}$ equals

$$
\begin{gathered}
\frac{1}{n(p-\delta)}-\frac{1}{p n}+\frac{2}{p-\delta} \sum_{k=1}^{\infty} \Re\left(\left(\frac{1-\delta}{p-\delta}\right)^{\left.\frac{2 \pi i}{\ln (p)} B\left(n, 1+\frac{2 k \pi i}{\ln (p)}\right)\right)+}\right. \\
\frac{2}{p} \sum_{k=1}^{\infty} \Re\left(B\left(n, 1+\frac{2 k \pi i}{\ln (p)}\right)\right)
\end{gathered}
$$

Unknown number of stations

Upper approximation

Let $H(n)=T(n)+L(Y(n)), Z(n)=n-Y(n)$. Let

$$
C(p, \delta, U)=\min _{m \leq U} \frac{1}{E[Y(m)]} \cdot \min _{m \leq U} \sum_{r=0}^{m} P[Z(m)=r] \cdot E[H(r)]
$$

Theorem

Let U be an upper bound on a number of slots. Then the total number of slots is bounded by

$$
(1+\mathcal{C}(p, \delta, U)) \cdot n
$$

Unknown number of stations

Upper approximation on C

Theorem

$$
C(p, \delta, U) \leq \frac{1}{\psi(p)}\left(W(\delta, p, U)+\frac{1}{2}+\frac{H_{U}}{\ln (1 / p)}\right)
$$

where
(1) $\psi(p)=\frac{1-p}{p \ln (1 / p)}\left(1-2 \sqrt{\frac{2 \pi^{2}}{\ln (1 / p) \sinh \left(2 \pi^{2} / \ln (1 / p)\right)}}\right)$,
(2) $W(\delta, p, U)=\max _{m \leq U} E[L(Y(m))]$.

Conclusions

Unknown number of stations

Comparison with simulations

Let $\left.\mathcal{C}\left(p^{*}, \delta, U\right)\right)=\min _{p} \mathcal{C}(p, \delta, U)$.

Table: Results for $\delta=0.001$

U	p^{*}	$\left(1+\mathcal{C}\left(p^{*}, \delta, U\right)\right) \cdot n$	simulations
100	0.037678	$1.3271 \cdot n$	$1.3168 \cdot n$
1000	0.0267521	$1.3998 \cdot n$	$1.3398 \cdot n$
10000	0.0232507	$1.4677 \cdot n$	$1.3482 \cdot n$

Corollary

Our estimation $\mathcal{C}(p, \delta, U)$ is very precise.

CKZ solution
 Capmarison with Cai-Lu-Wang algorithm

Comparison

CLW: Cai-Lu-Wang algorithm
CKZ: Cichon-Kutylowski-Zawada algorithm

Table: Results for $\lambda=0.005$

U	p^{*}	CLW (2003)	CKZ 2006
100	0.0423848	$\leq 1.6162 \cdot n$	$\leq 1.5927 \cdot n$
1000	0.0267521	$\leq 1.7497 \cdot n$	$\leq 1.6381 \cdot n$
10000	0.0232507	$\leq 1.9199 \cdot n$	$\leq 1.7647 \cdot n$

Future works
 Changing the probability

Non-uniform probability

We calculated another way of generating the random time when a station tries to start transmission: the density (on [0, 1]) was

$$
\varphi(x)=2 x .
$$

Then we obtained slightly better results than in the above algorithm.

Future works

Example: new technology required

Look at distribution of probabilities in n slots.

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	p_{7}	\cdots	p_{n}

Let $N(p, n, s)=E$ [number of winners] in ,,Nakano-Olariu game".

Optimization of Nakano - Olariu algorithm

- goal: $\max _{p} N(p, n, s)$
- constraints: $\bigwedge_{i=1}^{n}\left(0 \leq p_{i} \leq 1\right)$

A similar optimization problems should be solved for more flexible versions of Cai-Lu-Wang algorithms with carrier sensing.

Future works

Possible future results

Possible applications

(1) simpler algorithms

2) low energy algorithms

Future works

Possible future results

Possible applications

(1) simpler algorithms
(2) low energy algorithms

(3) But a lot of work must be done

Future works

Possible future results

Possible applications
(1) simpler algorithms
(2) low energy algorithms
(3) But a lot of work must be done

Future works

Possible future results

Possible applications
(1) simpler algorithms
(2) low energy algorithms
(3) But a lot of work must be done
(4) THANK YOU

