
How to Make Operating Systems for Smart Cards
Open?

Przemysław Błaśkiewicz, Przemysław Kubiak??, and Mirosław Kutyłowski

Wrocław University of Technology

Abstract. Nowadays the world of smart cards aimed for the market of ID-cards
and e-administration services is divided (roughly) into two main categories: na-
tive cards and java cards. The first choice imposes lower requirements to the chip
area and its energy consumption (which is especially important in case of contact-
less cards), whereas the second choice allows third parties to develop applications
for the card, making the product less dependent on the developer of its operating
system (OS). This dependency may be a crucial factor for administration of a
country planning to deploy a new ID-card, for example. However, apart from in-
creased requirements towards hardware, java cards do not provide access to low
level libraries, which affects flexibility and development of new applications.
In this paper we propose a new business model for smart cards’ OS developers,
namely: “earn on the service” instead of “earn on the product”. Applying the
signature scheme described below, OS developers will have interest in publishing
at least a partial specification of internal, low level API of their native OS.
On the algorithmic side, the main, two layered structure used by the signature
scheme may be discerned as an extension of CMSS and GMSS variants of Merkle
Signatures Scheme, and outperforms them in terms of speed of the structure
(re)initialization and the number of signatures available with a single structure.
Keywords: smart card, Merkle signatures, mediated signatures

1 Introduction

1.1 Functionality

Consider the following requirements: we would like to enable the smart card’s operating
system to check signatures under software loaded on the card with a public key stored on
the card. With possibly long lifetime of such a card and with card issuance spread over
time, we wish to assure little (if any) degradation in system’s security over considerable
period of time. At the same time, we would like the protocol to be very simple in
terms of embedded hardware usage: we shall use only ROM memory to store long term
data (in particular the public key for signature verification shall not be changed during
the hardware’s existence). At the same time we would like to preserve infrastructure’s
ability to replace signature private key should it be compromised. Additionally, we wish
to design the system in such a way as to allow implementation of business models
concerning certification and authenticated dissemination of end-user software.
? The paper is partially supported by Foundation for Polish Science, MISTRZ project

?? Contact author: przemyslaw.kubiak@pwr.wroc.pl, Wrocław University of Technology,
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

2 P. Błaśkiewicz, P. Kubiak, M. Kutyłowski

1.2 The Tool and Our Contribution

Long term cryptanalytic security is usually attributed to Merkle Signature Scheme
(MSS), and requirements for key length in MSS should rather not grow in the fore-
seeable future. However, the notion of cryptanalytic security does not capture the risk
of a private key being stolen or leaked e.g., by a fault injection attack. In case of such
a compromise the corresponding public key should be revoked. But the latter would be
a problem for embedded devices using that public key for input verification purposes.
Limited area of the chip makes constraints for some extra functionalities of the device,
like for example execution of the OCSP protocol.

On the other hand, in [1] a mediated variant of Merkle Signature Scheme has been
proposed (we call the variant mMSS for short). At the same time, paper [1] completely
neglects possible impact of mMSS on longevity of the public verification key and for
the public key infrastructure responsible for that key. This paper develops mMSS into a
protocol that fulfills the above requirements.

As an alternative to mMMS one may consider the framework depicted in Extended
Access Control (EAC) standard [2]. That is, the issuer of e-ID cards places the public
verification key on the card, and this key is used to authenticate terminals (and their
access rights) the smart card is used to connect to. The key placed on the card is called
a trust point. Thus the trust point could be used to additionally authenticate software
loaded on the card. However, at least two factors make this approach unattractive for
the manufacturer:

– The trust point needs to be updated periodically, hence cannot be embossed in ROM
of the card. Moreover, the card must check whether the currently stored trust point
is fresh enough to authenticate the terminal (or software), which creates additional
footprint for the auxiliary management procedures on the card.

– EAC uses asymmetric public key algorithms, thus they have to be implemented on
the card.

Although smart cards developed for e-ID market may have both futures already imple-
mented, for other application areas at least one of the factors may be an obstacle. For
example banking cards use EMV standard instead of EAC, and SIM cards rather utilise
symmetric algorithms.

Therefore, from the OS developer’s point of view different market sectors may pro-
vide different environments, and a single, low demanding tool well suited even for en-
vironments with a poor PKI infrastructure seems to be superior over a few specialized
ones. The tool, once implemented and scrutinized may be embossed in ROM of cards
developed for different market sectors.

1.3 Business Model

We assume that the smart card operating system manufacturer has an agreement with a
producer of the microcontrollers for which the OS is designed1 (the agreement should

1 Note that smart card’s OS highly depends on the hardware, hence publication of OS’s internals
is in interest of this hardware producer.

How to Make Operating Systems for Smart Cards Open 3

sign

Os

Os

Os

privatepublic

keys

HW manufacturer Os developer App developer

card cardcard

user
App

App

App

(x)

(d)

(e)(c)

(a)

(b)
(f)

Fig. 1. Flow of events for application development. Public key presented to hardware
producer (a) is embossed in card’s ROM (b); OS is implemented on the card (c); appli-
cation designer requests its application be verified (d) and receives signed version (e);
the application is uploaded to the card (f). Operation labelled (x) depends on the model
(see text).

be exclusive if the whole smart card’s OS is open source licensed). In Fig. 1 the flow of
events in the process of developing a smart-card application is presented. First, the OS
manufacturer presents a public key to the hardware manufacturer ((a) in Fig. 1), which
is then embossed in ROM of the microcontroller (b). The payment for the producer
is roughly proportional to the number of microcontrollers having the same public key
embossed.

Considering the key infrastructure, three cases need to be distinguished. This is
marked as action (x) in the figure – indicating the source of public and private keys pair.

– The contracting party (e.g., an issuer of e-ID cards) that purchases microcontrollers
(possibly with the kernel of the operating system installed on them2) through the
OS developer is able to maintain the signature service on its own (as is the case with
government structures, for example). Therefore the verification key chosen by the
contracting party is passed to the producer of the microcontroller. Action (x) takes
place, but both (d) and (e) are performed internally by the application developers
cooperating with the contracting party, which generates the signatures.

– The contracting party purchases not only the microcontrollers (with the core of
the OS on them), but also pays for each signature (actions (d) and (e)) made for
the series of cards purchased (cf. Subsect. 1.4). Hence this is the OS producer who
serves the signature service. Accordingly, the public key chosen by the OS producer
is embossed in the microcontrollers. There is no (x) action. Initial payment may
be with a discount. However, the OS manufacturer will additionally earn on the
signature service. This option may be attractive for banks and private companies.

– The OS manufacturer may itself purchase some number of microcontrollers, and
sell them directly to end users, who may enjoy developing new open source ap-
plications (e.g., students or hobbyists), or may need a secure platform for some

2 If the kernel is not on open source license then it must be protected from reading by user-
applications.

4 P. Błaśkiewicz, P. Kubiak, M. Kutyłowski

specialized software developed by someone else (the software developer may be of
open source or of commercial type). The OS manufacturer will charge the end-user
for each signature made exclusively for the user’s card (cf. Subsect. 1.4). Action (x)
does not happen, (d) and (e) are executed internally by the OS developer.

Each series sold for an institutional user is differentiated by the public key embossed
(and thus by the trees from Fig. 2 on page 7 constructed during a series of signatures
created). Smart cards sold by the OS manufacturer directly to the end-users may all
store the same public key.

1.4 Responsibility

Two factors should be established when software is signed by the OS manufacturer
(actions (d) and (e)):

– the set of cards the software may be loaded on,
– who is responsible for possible damages the software could make on the cards.

For this purpose we propose that each file before being signed is prepended with a
number of control fields. The first field carries either the serial number of the micro-
controller the file is addressed for, or the “broadcast” number, which means that the file
may be uploaded to any microcontroller which has the verification key corresponding
to the signature key used to sign the file.

The next field indicates the number of the agreement (or the license), which points
to party responsible for the signed software. If responsibility is on the side of the OS
manufacturer, then it should have it certified or perform certification itself. The latter
case may of course be reflected in the price for the signature.

After successful verification of the addressee number and the signature, the control
fields are removed by the microcontroller from the file loaded, and the file is internally
marked as valid. The signature shall not be stored on the card after its verification.

1.5 Related Work in Application Area

Apart from EAC mentioned in Subsect. 1.2, we leverage our idea from already existing
products and solutions. Perhaps the most prominent is that of Nokia’s third-party ap-
plication development chain [3]. In order to develop applications on Nokia’s platform,
a developer first needs to apply for a kind of access code corresponding to his particu-
lar phone, which enables it to accept foreign code. Next, when the application is ready
it undergoes a verification and certification process by Nokia and is made available to
the public. Only such application, bearing adequate signatures is accepted by all Nokia
platforms.

While this application focuses hardware-level access, a slightly more high-end ex-
ample is that of Windows operating systems when accepting third-party drivers and
software to be installed on a computer. During installation, the software is checked to
bear a signature of one of the developers trusted by the OS provider. However, if no
signature is present, the user can still opt to continue the installation.

How to Make Operating Systems for Smart Cards Open 5

Lastly, we mention the Java Verified programme, which basically allows applica-
tions written in JavaME to be tested for conformity with security standards and certi-
fied. The devices used for developing the application need to be preloaded with UTI
root certificate to enable them to verify R&D signature under the developed software,
and then to run the code. While this is similar to the Nokia case described above, the
PKI infrastructure is at full use here.

It is clear that such mechanism of authorizing code to be run on a given hardware is
of vital importance. We propose a solution that relies on inexpensive symmetric cryp-
tography and does not require the Public Key Infrastructure with all its mechanisms to
be maintained by either the hardware provider or OS designer.

Other Applications of the Signature Scheme Such a low demanding tool may also be
utilized to authenticate the FPGA bitstream (see [4] for a good argumentation thereof),
to authenticate upgrades of software developed for cars (e.g., ignition mappings), up-
dates of software for medical equipment or for avionics of an airplane. The latter two
are examples of highly demanding areas in terms of security, yet it still remains con-
ceivable that responsibility for secure execution of software is shifted to parties other
than hardware or OS developers.

Other area is hardware used in e-voting, in which transparency of the development
and maintenance processes is essential.

Notation. In the subsequent sections we mainly follow notation from [5]:H : {0, 1}∗ →
{0, 1}` for a hash function used in one-time signatures, H̃ : {0, 1}∗ → {0, 1}`′ for a
hash function used to build Merkle trees, G : {0, 1}∗ → {0, 1}n for a hash function
used to calculate messages’ digests (usually it is assumed that G is collision resistant,
however, in order to not entirely rely on collision resistance, message randomization
trick known from Schnorr signatures may be used – see the end of Subsect. 3.2), ⊕ is
exclusive or bit-wise operation (xor operation), a ∈R A for a choice of a from set A
with uniform probability distribution. In the protocol proposed it is assumed that `′ = n
(hence H̃ = G may be used).

2 Mediated Merkle Signatures from [1]

Mediated signature scheme [6] is a two-party variant of a signature scheme (in [6]
it was instantiated with RSA). The signature is valid if and only if each of the two
participants has correctly executed the signature protocol. One of the participants in
this two-party setting is a central server – in this way end-user’s device may be quickly
prevented from making a valid signature. This is especially useful when end user’s
device is lost, or the user is fired and is not allowed to make signatures on behalf of
her/his organization/enterprise any more.

Below we apply the idea of mMSS [1] to a more symmetric setting, i.e., to the
setting in which the signature key is composed of subkeys in possession of separate
servers (or rather Hardware Security Modules) having similar capabilities. Thus we are
interested in a classic, multi-party setting.

6 P. Błaśkiewicz, P. Kubiak, M. Kutyłowski

Let us recall one of the two ideas from [1] for making a multiparty version of MSS.
Let Γ ≥ 2 denotes the number of parties (exact value of Γ should follow from se-
curity level assured by the Hardware Security Module (HSM) and from efficiency of
the microcontroller deployed on end-users’ devices). Then each one-time public key
Yj , j = 0, 1, . . . , 2h − 1 in MSS (for description of MSS we refer the reader to Ap-
pendix A), that is each argument for creating the j-th leaf NODEj,0 = H̃(Yj), is a
concatenation of Γ one-time public keys of consecutive parties (we assume that partic-
ipants of the signature scheme are indexed). That is

Yj = Yj,1||Yj,1|| . . . ||Yj,Γ , (1)

where Yj,i = (y
(j,i)
1 , y

(j,i)
2 , . . . , y

(j,i)
t) is the one-time public key of the i-th party.

Each key Yj,i, i = 1, 2, . . . , Γ is distributed among parties after its generation by
the i-th party. Thus each of the parties can reconstruct the leaf NODEj,0 = H̃(Yj) and
the complete Merkle tree (nodes NODEj,0 = H̃(Yj) are also needed for Merkle tree
traversal algorithm reconstructing authentication paths (6)). The root NODE0,h of the
tree is the public key of the mMSS (we call it multiparty MSS).

2.1 Signature generation.

Assume that s ∈ {0, 1, . . . , 2h − 1} is the index of the first unused leaf of the Merkle
tree. Let M be a message to be signed. Each party i ∈ {1, 2, . . . , Γ} generates its
own one-time signature σ(i)

OTS(G(M)) of message digest G(M). Next the signatures
σ
(i)
OTS(G(M)), i = 1, . . . , Γ are distributed among the parties. Each of the parties veri-

fies the one time signatures, reconstructs authentication path (6) for NODEs,0 and ver-
ifies if the path ends on the root of the tree. The complete mMSS signature of M is:

(s, σ
(1)
OTS(G(M)), . . . , σ

(Γ)
OTS(G(M)), Ys,

(NODE(s/20)⊕1,0, . . . ,NODE(s/2j)⊕1,j , . . . ,NODE(s/2h−1)⊕1,h−1)).
(2)

Public key Ys does not have to be present in the signature (2) if Winternitz-OTS [7] is
used, since it is recoverable from σ

(i)
OTS(G(M)), i = 1, . . . , Γ . However, if the improve-

ment from [8] is used then some fragment of each Ys,i from formula (1) for j = s must
be present in place of Ys in (2). The rest of each Ys,i is recoverable from σ

(i)
OTS(G(M)),

i = 1, . . . , Γ .

2.2 Signature verification.

Verification of mMSS signatures is analogous to verification of MSS ones. The only
difference is verification of Γ one-time signatures with concatenated public key Ys (1),
or reconstruction of Ys from those Γ one-time signatures. In the subsequent sections
we assume that mMSS signature (2) may only be valid if all the one-time signatures
σ
(1)
OTS(G(M)), . . . , σ

(Γ)
OTS(G(M)) are present. However, some generalizations are possi-

ble, e.g., at least Γ ′ one-time signatures must be present to start signature verification
procedure, and if the OTS scheme from [8] is used complete subkeys Ys,i of key (1)
must be delivered in place of lacking signatures.

How to Make Operating Systems for Smart Cards Open 7

3 Robust Signatures for Verifiers having Low Circuit Complexity

The protocol proposed in this paper is a kind of mixture of mMSS scheme, of the CMSS
scheme [9] (its generalization is GMSS [10]) and of an idea proposed in [11, Sect.5.5].
Authors of [11] consider two solutions for extending the number of signatures available
in a single Merkle tree. The first solution is obvious: the public key (i.e., the root of the
tree) should be replaced with the root of the next tree. The second option is to utilize
the last (i.e., the rightmost) leaf of the tree to sign the root of the next tree. Then to each
signature made with the second tree the signature of its root made with the leaf of the
preceding tree is attached. If all but one leaves of the second tree are used the next tree
is generated and its root is signed with the last leaf of the second tree. The procedure
continues.

Below we utilize the second option, but not to a single Merkle tree, but to CMSS-
like structure (see Fig. 2). Moreover, to amortize cost of creation of second-level trees
we propose to use an unbalanced structure – unlike in CMSS and GMSS schemes, in
our scheme subtrees of the main tree have different heights.

...

...

T [0, 0]

T [1, 0]

T [1, 1]

T [1, 2h − 2]

Fig. 2. Tree-hierarchy in the protocol.

3.1 Self-Certifying Signatures in a Hierarchical Construction

The signature scheme is built according to the following rules:

– Each one-time signature in the scheme is a multi-party one (hence all subtrees in
the scheme are in fact mMSS trees), and all OT sub-signatures must be present to
make the signature valid.

– Initially a two-layered construction is deployed (see the left-hand side structure
in Fig. 2), with only two trees initialized (shown in gray). The main tree T [0, 0]
has 2h leaves, while the leftmost subtree T [1, 0] has 2h

′
leaves. Hence, the cost of

initialization of both gray trees in the structure is proportional to 2h + 2h
′
.

8 P. Błaśkiewicz, P. Kubiak, M. Kutyłowski

– The subtrees signed by the leaves of the main tree have capacities of 2h
′

(the gray
tree T [1, 0]), 2h′+1 (tree T [1, 1]), . . . , 2h

′+2h−2 (tree T [1, 2h−2]) signatures. Place
under the rightmost leaf of the tree T [0, 0] remains empty when the structure is used
up – that leaf shall be used for signing the next structure (depicted by the arrow in
Fig. 2).

– Each signature from the two-level structure contains two parameters at its begin-
ning: index s of the leaf being used in the subtree, length of the authentication path
(6) in that subtree. The length cannot be greater than h′ + 2h − 2 and (since it is of
the form h′ + j) gives index j of the leaf of the main tree that is used to sign root
of T [1, j].

– The subtree on the right hand side of tree T [1, j], that is the subtree T [1, j + 1],
for j = 0, 1, . . . , 2h− 3, may be built while the tree T [1, j] is being used up: when
a single leaf of T [1, j] is used, two leaves of T [1, j + 1] could be generated and
hashed (so the tree T [1, j + 1] is gradually built in left-to-right order. This way
construction of the structure is amortized.

– When the whole leftmost structure is used up or one of the HSMs becomes compro-
mised the next structure for 2h

′+2h−1 − 2h
′

signatures is initialized (this structure
has new private keys, that is new SEEDs – see Appendix A). The root of this new
structure is signed with the rightmost leaf of the main tree T [0, 0] of the first struc-
ture, and then private keys (the SEEDs) of the old structure are erased. No more
signatures could be made with the old structure – as we see compromise of a single
HSM and its private keys is not enough to compromise the scheme.

Since each one-time signature scheme is a multi-party one (cf. OT public key (1)) and
all Γ one-time sub-signatures must be present to make verification of the OT signature
possible, the OT signatures are in fact distributed ones. Therefore the scheme proposed
does not need Certificate Authority because in this distributed setting HSMs are contin-
ually certifying each other: it suffices that not-compromised HSMs aborts execution of
the protocol to prevent signing some particular code.

Due to the trick from [11, Sect.5.5] replacement of the structure does not imply re-
placement of the verification key (i.e., of the root of T [0, 0]): to each new signature a
signature of the new root that verifies with the old root is attached, but private keys of
the old structure are erased. Note that the same trick could be made with any distributed
signature scheme, but Merkle signatures are supposed to be more resistant to cryptanal-
ysis than other schemes. Moreover, arithmetic required on the side of the verifier is very
simple: only hash functions are needed.

3.2 Security of the Scheme

Since 128-bit output of H is sufficient (cf. [8]) function H may be instantiated with a
fast hash function built from a 128-bit block cipher operating with a 128-bit key (cf..
e.g., [12]). Colliaion resistance property is required from G and H̃ . A good choice
in this case may be e.g., a double-pipe construction of Lucks [13] (see [14, Sect.4]
for strong arguments for security of the construction). Another option is to use a hash
function utilizing double block length compression function based on a 128-bit block
cipher using 256-bit key [15].

How to Make Operating Systems for Smart Cards Open 9

Still, we should take a closer look on the requirement of collision resistance of H̃
in our scheme. Indeed, assume that it is easy to find collisions in H̃ . Thus to exploit
weaknesses of H̃ an attacker needs pairs of arguments for H̃ having special proper-
ties or/and needs many such arguments to leverage the birthday paradox. However, in
MSS the initial arguments of H̃ are OTS public keys, i.e., some sequences of outputs
of H . Since H gives pseudorandom output we may assume that the attacker must gen-
erate some set of “candidate” OTS private keys. Accordingly, consider the following
scenario: a party generating MSS public and private key pair generates a set of private
OTS keys, and then a set of public OTS keys. These public keys are hashed with H̃ and
if collision is found, the colliding OTS keys will be used in the following attack. One of
the keys is used to produce some leaf of the MSS tree, and when that key is used to sign
some message, the colliding key may be used to sign any other message. This “extra”
signature is then correctly verified with the root of the tree. As the colliding private keys
are different, then both signatures may be revealed without a risk connected with OTS:
if two OTS signatures of different messages are made with the same private key, then
any party can make a signature of some other (maybe a nonsense) message. The attack
above can be easily extended on higher levels of nodes. The crucial point of this attack
is that the adversary can in advance make any number of candidate OTS keys, and then
choose the colliding ones. But our scheme is a distributed one, and only OTS public
keys Yj,i (from (1)) submitted by separate HSMs are used to produce a leaf H̃(Yj). If
at least one HSM behaves honestly and privately generates its own component Yj,i for
leaf H̃(Yj) then the described collision attack immediately reduces to a second preim-
age attack: compromised HSMs have no time to adjust their arguments ofH to produce
collisions for leaf H̃(Yj), and once some arguments are chosen and H̃(Yj) is calcu-
lated then to find an OTS key for an“extra” signature a second preimage of the value of
H̃(Yj) must be found, or a series of second preimages for a value of H̃ on some higher
level. To minimize the possibility of any adjustments of arguments of H made in real
time to find collisions for leaf H̃(Yj), commitments H(Yj,i) to Yj,i, i = 1, 2, . . . , Γ ,
may be submitted first by all HSMs, and then Yj,i would be revealed to produce value
of H̃(Yj).

The collision attack on MSS described above, if ever possible, could be devised by
the implementer of the device: maliciously and carefully chosen set of seeds is planted
on the device to later make some “extra” signatures with colliding key(s) present out-
side the device. Therefore care should be taken to assure that our distributed system is
distributed indeed. Preferably, the HSMs should be built by different teams.

As refers toG: collision resistance of message digest function is a common require-
ment in signature schemes. On the other hand, to strengthen the protocol the signature
service may always prepend a random bitstring to the message before hashing and sign-
ing it. To each new signature the bitstring should be freshly and distributively generated
by the HSMs with use of a cryptographically secure protocol (i.e., bit commitments).
Smartcards may be designed in such a way that this initial random bitstring is removed
from the message (i.e., from the program code) after signature verification. This mes-
sage randomization technique is well justified [16].

10 P. Błaśkiewicz, P. Kubiak, M. Kutyłowski

3.3 Efficiency of the Scheme

For h = 6, h′ = 7 each of the two-layered structures has capacity of 270−27 signatures,
and for h = 7, h′ = 7 theoretical capacity of 2134−27 signatures. As a side result of our
construction and parameter choice we have shown that trees of height reaching values
> 60 are feasible, despite the claim expressed in [17]. Indeed, paper [17] estimates
feasibility of key generation for tree heights up to 20, but does not take the possibility
of amortization into account. Note that tree traversal algorithms like the one from [17]
allow to efficiently generate authentication paths (6) even for trees of heights needed
in our scheme. As a result, signing procedure executed on the side of HSMs remains
efficient (SEEDs for OT private keys could be calculated as a tree structure from some
root private SEEDs).

Let the scheme from [8] be used as OTS. Then to reduce storage requirements the
calculation of NODEs,0 should be done in stages by the verifier: application of com-
pression function H̃ to first blocks Ys,i of Ys becomes possible even before Ys from
formula (1) is completely recomputed from OTSs. Calculation cost of G(M) should
not be prohibitive, because due to EEPROM size constraints applications for smart
cards are rather of moderate size. We quite conservatively assume that output of G
has n = 256 bits. Then verification of a single OTS costs 1

2 · t(w − 1) = 1
2 · 399

calls of H on average, where w and ` are parameters of scheme [8] and w = 4 is
optimal (for n = 256 and for w = 4 we get ` = 133). In a single one-time mul-
tiparty signature we have Γ one-time sub-signatures, and since the first structure is a
two-level one, we need 2 · Γ · 1

2 · `(w − 1) = Γ · 399 calls of H on average, and
(h′ + 2h − 2 + 1) + (h+ 1) = h′ + h+ 2h = 77 calls of H̃ for (h, h′) = (6, 7). Each
reinitialization of the structure increases the cost of signature verification by 1

2 ·Γ · 399
calls of H on average (counting over reinitialization events) and h + 1 = 7 additional
calls of H̃ .

For Γ = 2 or Γ = 3 all the values above are certainly not prohibitive3, especially
when hash functions are implemented in hardware. Note that Merkle signature verifi-
cation is cheaper than signature generation (see Appendix A and Merkle-tree traversal
algorithm [17]), and in case of MSS the latter was implemented on a 8-bit general pur-
pose microcontroller [12]. What is more, users seem to be accustomed to the fact that
software upgrade on a PC takes some time, hence in case of a smart card they could
expect similar phenomenon.

Notably, the contribution of OTS to the final signature cost is considerable, thus the
two-level unbalanced structure outperforms the multi-level GMSS solution.

Signature size is a less important factor than verification time: the signature would
not be stored on the card. It would be proceeded “on the fly”: consecutive iterations of
compression function of H̃ would gradually consume Ys (1) while Ys would be grad-
ually reconstructed from consecutive blocks of consecutive one-time sub-signatures.
Therefore it suffices to transfer signature to a card in portions, a next portion is sent by
a reader if the acknowledgement is received from the card.

3 In fact each single call of H in the scheme could be replaced with a single call of its com-
pression function, whereas a single call of H̃ in the scheme corresponds to a few calls of the
compression function of H̃ . The number of calls of the latter compression function depends on
its compression ratio, but in any case it does not dominate in the cost of signature verification.

How to Make Operating Systems for Smart Cards Open 11

References

1. Kubiak, P., Kutyłowski, M.: Polish concepts for securing e-government document flow. In:
ISSE 2010 Proceedings, Vieweg + Teubner Verlag (2010)

2. BSI: Advanced Security Mechanisms for Machine Readable Travel Documents 2.1. Tech-
nische Richtlinie TR-03110-2 (2012)

3. Nokia Developer: Packaging and signing. (online: http://www.developer.nokia.
com/Distribute/Packaging_and_signing.xhtml)

4. Drimer, S.: Authentication of FPGA bitstreams: why and how. In: In Applied Reconfigurable
Computing, volume 4419 of LNCS. (2007) 73–84

5. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-preimage
resistant hash functions. In: PQCrypto. (2008) 109–123

6. Boneh, D., Ding, X., Tsudik, G., Wong, C.M.: A method for fast revocation of public key
certificates and security capabilities. In: SSYM’01: Proceedings of the 10th conference on
USENIX Security Symposium, Berkeley, CA, USA (2001) 22–22

7. Merkle, R.C.: A certified digital signature. In: CRYPTO. (1989) 218–238
8. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security of the

Winternitz one-time signature scheme. In: AFRICACRYPT. (2011) 363–378
9. Buchmann, J., García, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS - an im-

proved Merkle signature scheme. In: INDOCRYPT. (2006) 349–363
10. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle signatures

with virtually unlimited signature capacity. In: ACNS. (2007) 31–45
11. Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Have they become practical?

Cryptology ePrint Archive, Report 2005/442 (2005)
12. Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast hash-based signatures

on constrained devices. In: CARDIS. (2008) 104–117
13. Lucks, S.: A failure-friendly design principle for hash functions. In: ASIACRYPT. (2005)

474–494
14. Hoch, J.J., Shamir, A.: On the strength of the concatenated hash combiner when all the hash

functions are weak. In: ICALP (2). (2008) 616–630
15. Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: Weimar-DM: A highly secure double-

length compression function. In: ACISP. (2012) 152–165
16. Neven, G., Smart, N., Warinschi, B.: Hash function requirements for Schnorr signatures.

Journal of Mathematical Cryptology 3(1) (2009) 69–87
17. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In: PQCrypto.

(2008) 63–78
18. Merkle, R.C.: Secrecy, authentication, and public key systems. PhD thesis, Deptartment of

Electrical Engineering, Stanford University (1979)

A Merkle Signature Scheme (MSS)

In [18, Sect.V] Ralph Merkle proposed a protocol that allows to verify multiple (but a
limited number of) one-time signatures with a single verification key: 2h public keys of
the one-time signature scheme are put in a sequence

(Y0, Y1, . . . , Y2h−1). (3)

Corresponding private keys are random bitstrings, but to facilitate implementations and
to avoid high storage requirements those bitstrings are usually generated from some

http://www.developer.nokia.com/Distribute/Packaging_and_signing.xhtml
http://www.developer.nokia.com/Distribute/Packaging_and_signing.xhtml

12 P. Błaśkiewicz, P. Kubiak, M. Kutyłowski

SEED, with usage of cryptographically secure pseudorandom number generator. Then
the private key reduces to that SEED value.

Hash function H is applied separately to each public key in sequence (3) and a
sequence of 2h hashes is obtained:

(NODE0,0,NODE1,0, . . . ,NODE2h−1,0),

i.e., NODEj,0 = H̃(Yj). Next a hash tree is build from these bottom level nodes (so the
nodes become leaves of the tree). The tree is build according to the rule:

NODEi,j = H̃(NODE2i,j−1||NODE2i+1,j−1), (4)

where i = 0, 1, . . . , 2h−j − 1, j = 1, 2, . . . , h. The root of the tree, i.e., NODE0,h, is a
single verification key for 2h one-time signatures.

A.1 Signature generation.
Suppose that s ∈ {0, 1, . . . , 2h − 1} is the index of the first unused leaf of the Merkle
tree. First, to reduce the task of signing a bitstring to signing a bitstring of a predeter-
mined length, a message digest function G is applied to message M . Then a one-time
signature σOTS(G(M)) of G(M) is generated – the private key corresponding to verifi-
cation key Ys is used. Next the verification key Ys is attached to σOTS(G(M)) (the last
step not always is necessary, cf. [7]). Let

(NODEs,0,NODEs/2,1, . . . ,NODEs/2j ,j , . . . ,NODEs/2h−1,h−1) (5)

be the path from NODEs,0 = H̃(Ys) to the root of the tree, where s/2j means that s is
non-cyclically shifted to the right by j bits. The root NODE0,h is public, thus it is not
included in the path (5) (see that for s ∈ {0, 1, . . . , 2h − 1} we have s/2h = 0). Note
that NODE(s/2j)⊕1,j is the sibling of NODEs/2j ,j on the path (5): the ⊕ operation is
bit-wise, hence as a result of (s/2j)⊕ 1 only the least significant bit of s/2j is flipped.
The following sequence of the siblings:

(NODE(s/20)⊕1,0, . . . ,NODE(s/2j)⊕1,j , . . . ,NODE(s/2h−1)⊕1,h−1). (6)

is called authentication path for NODEs,0. The Merkle signature σs(M) of M is

(s, σOTS(G(M)), Ys, (NODE(s/20)⊕1,0, . . . ,NODE(s/2j)⊕1,j , . . . ,NODE(s/2h−1)⊕1,h−1)).

A.2 Signature verification.
Given

(s, σ′OTS(G(M)), Y ′s , (NODE′(s/20)⊕1,0, . . . ,NODE′(s/2j)⊕1,j , . . . ,NODE′(s/2h−1)⊕1,h−1)).
(7)

signature σ′OTS(M) is verified with verification key Y ′s , or in the OTS schemes [7],
[8] Y ′s is reconstructed on the basis of σ′OTS(M). Next genuineness of Y ′s is verified:
NODE′s,0 = H̃(Y ′s) is calculated first, and then consecutive values

NODE′s/2i,i = H̃(NODE′min(s/2i−1,(s/2i−1)⊕1),i−1||NODE′max(s/2i−1,(s/2i−1)⊕1),i−1)

for i = 1, 2, . . . , h are obtained (cf. the rule (4)). The signature (7) is valid if NODE′s/2h,h
equals the public key NODE0,h.

