Conditional Digital Signatures

Marek Klonowski, Mirosław Kutyłowski, <u>Anna Lauks</u>, Filip Zagórski

Wrocław University of Technology

TrustBus 2005

イロト イポト イヨト イヨト

Idea of Conditional Signatures

Conditional Digital Signature = a signature that is conditioned upon a certain event.

Examples:

▶ signature that is valid only if Bob has signed document *M*,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

signature that is valid after 20 September 2006.

Previous Solutions

- The contents of signed message had to be changed,
- the condition was expressed in a natural language.

Example:

To add a condition:

"This document is valid only if a document M_2 with hash value 168291bgb3vgVIQ719 has been signed by Bob."

| 4 同 ト 4 三 ト 4 三 ト

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

New Approach

- Scenario:
 - Alice's signature of M_1 is conditioned by Bob's signature of M_2 .
- Steps of the protocol:
 - ▶ Bob publishes a commitment a parameter related to the future signature of M₂,
 - Alice prepares a pre-signature of M₁,
 - ▶ Bob signs M₂,
 - ▶ using Bob's signature of M₂, signature of M₁ can be retrieved from the pre-signature.

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

Features of New Approach

- There is no change of the message contents,
- ► until Bob signs M₂ it is infeasible to recover Alice's signature of M₁,
- Alice's signature retrieved from the pre-signature:
 - is a standard verifiable signature,
 - has no reference to M_2 or Bob.

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

ElGamal Based CDS - Assumptions

- Alice and Bob use the same group \mathbb{Z}_{p}^{*} ,
- ▶ *p* a prime number with hard discrete logarithm problem,
- g generator of \mathbb{Z}_p^* ,
- all operations modulo p.

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

ElGamal Based CDS - Assumptions

Alice wants to generate signature of M_1 conditioned by a Bob's signature of M_2 .

private key public key $x_1 <math display="block">y_1 = g^{x_1}$

Bob x_2 $<math>y_2 = g^{x_2}$

イロト イポト イヨト イヨト

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト 不得 とく ヨト イヨト 三日

Creation of a Commitment

- ▶ k_2 random number co prime with p-1,
- ► $a_2 = g^{k_2}$,
- ► $S = g^{H(M_2)} y_2^{-a_2}$,
- (a_2, S) commitment of Bob, published or given to Alice.

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

3

Key Property

If (a_2, b_2) is a valid ElGamal signature of M_2 , then $S = a_2^{b_2}$.

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

3

Key Property

If (a_2, b_2) is a valid ElGamal signature of M_2 , then $S = a_2^{b_2}$. Indeed,

1.
$$S = g^{H(M_2)} y_2^{-a_2}$$

Marek Klonowski, Mirosław Kutyłowski, Anna Lauks, Filip Zagórski Conditional Digital Signatures

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

-

Key Property

If (a_2, b_2) is a valid ElGamal signature of M_2 , then $S = a_2^{b_2}$. Indeed,

1.
$$S = g^{H(M_2)} y_2^{-a_2}$$

2. ElGamal signature (a_2, b_2) is valid

$$\iff a_2^{b_2} \cdot y_2^{a_2} = g^{H(M_2)}$$

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

Creation of a PreSignature

- ► (*a*₂, *S*) commitment of Bob,
- ▶ k_1 a random number co prime with p-1,
- (a₁, b₁) a standard ElGamal signature of M₁,
 a₁ = g^{k₁},
 b₁ = k₁⁻¹ ⋅ (H(M₁) x₁a₁),
- z random value,
- ► (a₁, b₁ · S^z, a₂^z) presignature of M₁ conditioned by Bob's signature of M₂.

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

-

Signature Retrieval

• $(a_1, b_1 \cdot S^z, a_2^z)$ - Alice's presignature of M_1 ,

Retrieval of b_1 from the presignature:

$$\frac{b_1 S^z}{(a_2^z)^{b_2}} = \frac{b_1 S^z}{\left(a_2^{b_2}\right)^z} = \frac{b_1 S^z}{S^z} = b_1$$

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

Multiple Conditions

- Scenario:
 - ► We want messages M₂,... M_k to be signed before someone may derive a signature of M₁ from a presignature.
- Solution:
 - Multiple conditions scheme.

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

Multiple Conditions - Commitments

- commitments (a_i, S_i) for i = 2, ..., k
 - $a_i = g^{k_i}$ for a random k_i ,
 - ► S_i = g^{H(M_i)} y_i^{a_i}, where y_i is the public key of the party that is supposed to sign M_i.

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

Multiple Conditions - PreSignature Creation

- (a_i, S_i) for i = 2, ..., k commitments,
- k_1 random number co-prime with p-1,
- (a_1, b_1) standard ElGamal signature of M_1 ,
- > $z_2, \ldots z_k$ random numbers.

Pre-Signature of M_1 conditioned by signatures of M_2, \ldots, M_k :

$$(a_1, b_1 \cdot \prod_{i=2}^k S_i^{z_i}, a_2^{z_2}, \ldots, a_k^{z_k})$$

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

Multiple Conditions - Signature Retrieval

▶ Pre-signature of *M*₁:

$$(a_1, b_1 \cdot \prod_{i=2}^k S_i^{z_i}, a_2^{z_2}, \dots, a_k^{z_k})$$

- retrieval of b₁ is possible, if signatures (a_i, b_i) for i = 2,...k are published,
- retrieval based on equalities $S_i = a_i^{b_i}$.

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

イロト イポト イヨト イヨト

CDS based on Undeniable Signatures

- Scenario:
 - Alice produces a pre-signature of M₁ using Bob commitment related to signature of M₂.

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CDS based on Undeniable Signatures

- Scenario:
 - Alice produces a pre-signature of M₁ using Bob commitment related to signature of M₂.
- Problem:
 - How a third party can check that a pre-signature can be transformed into Alice's signature of M₁ after Bob signs M₂?

Features of New Approach ElGamal Based Conditional Signatures Multiple Conditions CDS based on Undeniable Signatures

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CDS based on Undeniable Signatures

- Scenario:
 - Alice produces a pre-signature of M₁ using Bob commitment related to signature of M₂.
- Problem:
 - How a third party can check that a pre-signature can be transformed into Alice's signature of M₁ after Bob signs M₂?
- Solution:
 - Conditional signatures based on undeniable signatures.

Digital Business

- Signing conditioned documents,
- fair stock exchange,
- secure credit cards and online transactions,

► ...

イロト イポト イヨト イヨト

-

Time Authority

- an institution that periodically confirms the current time,
- example: on day X after hour Y Time Authority signs a message: *"today is X, the current time has passed Y"*,
- useful if we wish that signature of M₁ can be retrieved at a given future date.

イロト イポト イヨト イヨト

Conclusions and Open Problems

- Construction of conditional signatures is relatively straightforward,
- finally we obtain standard signatures ElGamal, undeniable.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Conclusions and Open Problems

Problem: The person signing the conditioning document has to prepare and publish a commitment long before signing the document.

How to construct a scheme that does not need any additional parameters? Is it possible??

< ロ > < 同 > < 回 > < 回 > < 回 > <

Thank you for attention!

イロト イポト イヨト イヨト

-

Marek Klonowski, Mirosław Kutyłowski, Anna Lauks, Filip Zagórski Conditional Digital Signatures