

Malicious Crypto on Secure Devices

Mirosław Kutyłowski

Concept of Secure Hardware Solutions

Fault Attacks

malicious cryptography

Defense

Conclusion

Malicious Cryptography on "Secure" Devices

Mirosław Kutyłowski

Wrocław University of Technology Institute of Mathematics and Computer Science

EFPE 2008

Vulnerability of Software

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept of Secure Hardware Solutions

Fault Attacks

Malicious cryptography

methods

Conclusion

Infection possibilities

- 11 it is easy to hide malicious code in big systems
- inspecting what software is really doing in a rigorous way is impossible in nontrivial cases
 - ← basic mathematical facts about halting problem . . .

Secure signature devices

- it must be checkable what a device is really doing
- any security relevant change must be evident to the user

Is EU Directive ignoring the mathematical facts known already for decades?

secure signature creation devices

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept of Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense

Conclusion

Idea

perform sensitive operations (storing key, signing) on a dedicated unit

secure signature creation devices

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept of Secure Hardware Solutions

Fault Attacks

Malicious cryptography

methods

Idea

- perform sensitive operations (storing key, signing) on a dedicated unit
- implement only those functionalities that are absolutely necessary a simple system is easier to check

secure signature creation devices

Malicious Crypto on Secure Devices

Mirosław Kutyłowsł

Concept of Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Detense method:

Conclusion

Idea

- perform sensitive operations (storing key, signing) on a dedicated unit
- implement only those functionalities that are absolutely necessary a simple system is easier to check
- implement in hardware where a change is impossible

secure signature creation devices

Malicious Crypto on Secure Devices

Mirosław Kutyłowsł

Concept of Secure Hardware Solutions

Fault Attacks

cryptography

methods

Idea

- perform sensitive operations (storing key, signing) on a dedicated unit
- implement only those functionalities that are absolutely necessary a simple system is easier to check
- 3 implement in hardware where a change is impossible
- Implement in hardware with an extra physical protection

Solution

a dedicated signing chip

Misunderstandings

Malicious Crypto on Secure Devices

Mirosław Kutyłowsł

Concept of Secure Hardware Solutions

Fault Attacks

cryptography

methods

Conclusion

Common problems

- expanding legal definition of secure device on PC (Polish problem)
 saying that a software on PC can satisfy the requirements is a lie
- increasing functionality of a signing chip new applications ...
- how do you know that a chip tested is the same as the chip you get?

Fault cryptanalysis

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense

Conclusio

Mechanism of a fault attack

- a chip might be tamper-proof, but some kind of faults are inevitable (piece of uranium on top of a chip, particles changing state of registers)
- 2 a computation performed with a (random) fault and correctly on the same input
- a difference between the correct output and the faulty output may show the secret key used
- d classical attack of this type: on RSA with Chinese Remainder Theorem implementation

Fault attack countermeasures

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense

Conclusion

Solutions

- 11 check the signature on chip before outputting it
- yet some information can be leaked (approximate number of ones in the key)

Fault attack countermeasures

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defence

Conclusion

Solutions

- 11 check the signature on chip before outputting it
- yet some information can be leaked (approximate number of ones in the key)
- checking on-the-fly

Fault attack countermeasures

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense

Conclusior

Solutions

- 1 check the signature on chip before outputting it
- yet some information can be leaked (approximate number of ones in the key)
- checking on-the-fly

Problems

- slowing down signature creation
- increasing cost
- 3 faults in checks?

Techniques of hidden information transfer kleptographic channel

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept of Secure Hardware Solutions

Fault Attacks

Malicious cryptography

methods

Conclusio

Properties

- no extra information is sent outside
- 2 output information according to protocol description, no audit can find irregularities,
- only knowledge of secret key (not included in a chip) enables retrieval of the encoded information.

Techniques of hidden information transfer kleptographic channel

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept of Secure Hardware Solutions

Fault Attacks

Malicious cryptography

methods

Properties

- no extra information is sent outside
- 2 output information according to protocol description, no audit can find irregularities,
- only knowledge of secret key (not included in a chip) enables retrieval of the encoded information.

Implementation

- on protocol level
- 2 in SSL
- 3 ... anywhere using random parameters

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept of Secure Hardware Solutions

Fault Attacks

Malicious cryptography

methods

Conclusion

1 a protocol uses g^k , where g is a generator of a group with hard Discrete Logarithm problem, k chosen at random,

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept of Secure Hardware Solutions

Fault Attacks

Malicious cryptography

methods

Conclusio

- 1 a protocol uses g^k , where g is a generator of a group with hard Discrete Logarithm problem, k chosen at random,
- $Y = g^x$ is a public key to be used by infected code, x private key

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

method:

Conclusio

- 1 a protocol uses g^k , where g is a generator of a group with hard Discrete Logarithm problem, k chosen at random,
- $Y = g^x$ is a public key to be used by infected code, x private key
- infected chip computes k so that SHA-1(Y^k) betrays secret information

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense methods

Conclusio

- 11 a protocol uses g^k , where g is a generator of a group with hard Discrete Logarithm problem, k chosen at random,
- $Y = g^x$ is a public key to be used by infected code, x private key
- infected chip computes k so that SHA-1(Y^k) betrays secret information
- 4 adversary monitors transmission z, computes

$$U := z^{x}$$
, SHA-1(U)

Technical idea

kleptographic channel- example

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

methods

Conclusion

- a protocol uses g^k , where g is a generator of a group with hard Discrete Logarithm problem, k chosen at random,
- $Y = g^x$ is a public key to be used by infected code, x private key
- infected chip computes k so that SHA-1(Y^k) betrays secret information
- 4 adversary monitors transmission z, computes

$$U := z^{x}$$
, SHA-1(U)

Check: for $z = g^k$ from transmission:

$$U = z^{x} = (g^{k})^{x} = (g^{x})^{k} = Y^{k}$$

General Situation corollaries

Malicious Crypto on Secure Devices

Mirosław Kutyłowsł

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defens

Conclusion

- no reliable solution so far,
- electronic devices may make more trouble than help in case of sensitive appications (voting, signing)

General Situation corollaries

Malicious Crypto on Secure Devices

Mirosłav Kutyłows

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

nethods

Conclusior

- no reliable solution so far,
- electronic devices may make more trouble than help in case of sensitive appications (voting, signing)

What to do?

Trusted Platforms? What technology of testing without giving a backdoor to a secret key?

Unpredictability versus Randomness verifiable "randomness"

Malicious Crypto on Secure Devices

Mirosław Kutyłowsł

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense methods

Idea

- 1 in many situation we do not require random parameters
- we require parameters that cannot be guessed by malicious Mallet trying to break the scheme
- afterward the secret parameters can be revealed for many protocols.

Unpredictability versus Randomness verifiable "randomness"

Malicious Crypto on Secure Devices

Mirosław Kutyłowsł

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense methods Idea

- 1 in many situation we do not require random parameters
- we require parameters that cannot be guessed by malicious Mallet trying to break the scheme
- afterward the secret parameters can be revealed for many protocols.
 but not for DSA!

Unpredictability instead of Randomness DH case

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense methods

Original DH key exchange

- 1 Alice chooses k_1 at random, computes $z_1 := g^{k_1}$
- Bob chooses k_2 at random, computes $z_2 := g^{k_2}$
- 3 Alice and Bob exchange z_1 and z_2 ,
- 4 Alice and Bob compute shared key K:

$$K := z_1^{k_2}$$
 or by $K := z_2^{k_1}$

Danger

 $z_i^x = Y^{k_i}$ for $Y = g^x$ can encode the next exponent – full kleptographic attack possible

Patch to DH

CANS'2006, Gołebiewski, Kutyłowski, Zagórski

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense methods

Conclusion

Modified DH key exchange

- 1 Alice and Bob agree upon parameter *a* in clear (*a* might be the current time)
 - 2 Alice computes $k_1 := \text{hash}(\text{RSA}_{Alice}(a))$, computes $z_1 := g^{k_1}$
 - Bob computes $k_1 := \text{hash}(\text{RSA}_{Alice}(a))$, computes $z_2 := q^{k_2}$
 - 4 Alice and Bob exchange z_1 and z_2 ,
- 5 Alice and Bob compute shared key K:

$$K := z_1^{k_2}$$
 or by $K := z_2^{k_1}$

- 6 using channel encrypted with K, Alice and Bob reveal themselves signatures of a
- Alice and Bob check k_1 and k_2 used

Derandomization key defense idea

Malicious Crypto on Secure Devices

Mirosław Kutyłowsł

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense methods

unexpectedness instead of randomness

- in many cases we do not need random strings, we need string that cannot be guessed by third parties
- 2 deterministic signatures cannot be predicted by third parties

Derandomization unsolved problems

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept of Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense methods

Conclusion

Discrete Log Signatures

revealing the random exponent used reveals the signing key

Problem

we do not know any technique that would secure DL signatures against kleptography

Secure signature devices kleptography issues

Malicious Crypto on Secure Devices

Mirosław Kutyłowsł

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Defense

Conclusion

Corollaries

- unless new algorithms developed, DL schemes should not be declared suitable for secure signature creation devices
- deterministic schemes seem to be more suitable

Malicious Crypto on Secure Devices

Mirosław Kutyłowsk

Concept o Secure Hardware Solutions

Fault Attacks

Malicious cryptography

Cryptograpny

Conclusion

Thanks for your attention