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Abstract. The standard approach for electronic signatures and seals is
that Secure Signature Creation Devices are responsible for confidentiality
of secret keys and remain under sole control of their owner. The eIDAS
Regulation of EU follows this approach. However, once the private key
gets compromised (e.g. by a faulty design of the signing device or pow-
erful cryptanalysis of the public key), then the signature model becomes
a deadly trap.
We address this problem by creating a second line of defence – when
the signing key gets compromized we can still fish out the signatures
created by a signature device. The proposed approach of signature-in-
signature can be implemented in the standard Schnorr signature and can
remain hidden until the examination of signatures after the signing key
compromise.
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To be used in business and administration, an electronic signature must have
a legal status equivalent to that of handwritten signatures. For this purpose the
lawmakers specify requirements for electronic signatures. The eIDAS regulation
[6] provides such a framework for the whole EU. In particular, as all other legal
frameworks, it focuses on secure signature creation devices (SSCD). An SSCD
has to guarantee that the signatures corresponding to the public key of its owner
can be created only by this SSCD and that the owner’s consent is given prior to
signature creation.

This approach leads to severe problems that are neglected in the legal frame-
work and that are not sufficiently addressed by technical designs. One of the
problems is that somebody may learn the private signing key allegedly stored
only in the SSCD. There are multiple ways for this unfortunate event to hap-
pen. E.g., a powerful adversary may break the underlying scheme and reveal
the key anonymously just to create a legal mess for his political or economical
advantage. The keys might be compromised also by a faulty design of key gen-
eration procedure (e.g. Estonian eID case [5]), side-channel leakage (see e.g. [1])
etc. While there is an option for securing against leakage by appropriate design
of cryptographic schemes (see e.g. [7]), nothing helps if the key is exposed by
successful cryptanalysis. If there is no secure record, e.g. in a distributed ledger,
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witnessing which signatures have been created by the attacked SSCD, or the
list of signatures cannot be checked for completeness (cf. [3]), then we get into
severe troubles regarding validity of signed documents.

Signature in signature. Our approach of signature-in-signature aims to safe-
guard the legitimate signatures in case of revealing the signing key. The idea is
that inside a regular signature (called outer signature) there is a hidden inner
signature. For the inner signature neither the public key is presented nor its ex-
istence should be detectable. The public key for the inner signature is revealed
at the moment when the standard signing key is compromised.

The key procedures of such a scheme are signature creation (subdivided into
creation of the inner and outer signatures) and signature re-validation executed
after revealing the signing key.

Once a signing key is revealed, we expect that we can challenge the validity
of all signatures generated with that SSCD. However, the legal ruling is that a
qualified signature remains valid if it has been created before the qualified cer-
tificates related to the signature was revoked. In practice however, a malicious
forger rarely has interest in informing the victim about his success and the vic-
tim learns about the attack when it is already too late to revoke any certificates.
On the other hand, invalidating en bloc all signatures created with a compro-
mised key is also a very bad idea – it would enable the signer to cancel his past
obligations.

What we propose is a scheme where a layman user holding a SSCD can come
to a court of law, where via re-validation procedure the signatures created by
the SSCD will be confirmed and the other signatures will be rejected.

While some approaches in the literature aim to reach this goal with dedicated
schemes (e.g. fail-stop signatures), we aim to design a solution that can be incor-
porated into standard schemes, so that even up to the moment of re-validation
it would be unknown whether this defense has been implemented by the SSCD.

In the following we show an example design based on inner and outer Schnorr
signatures. Other designs (e.g. with inner BLS signature and outer DSA signa-
ture) are also possible.

1 Example Sig-in-Sig Scheme

Pseudorandomness of the first component of the Schnorr signature.
Let Z(M,x) denote the set of elements s such that there is a signature (s, e) of
M and the private key x. Then s ∈ Z(M,x) if there is k such that

s = k − x ·Hash(M, gk) mod q (1)

where q is the order of the group used. We ask whether it is possible to recognize
if s ∈ Z(M,x), for a known x.

In the random oracle model we may treat Hash as a random function. Then
the probability that (1) holds for given s and k is 1

q , as the hash needs to have



one particular value. So the probability that (1) does not hold for any k equals
(1 − 1

q )q ≈ 1
e . The probability that there are exactly i solutions k for (1) is(

q
i

) 1
qi (1− 1

q )q−i < 1
i! . So we may assume that the number of solutions k for (1)

is negligible with respect to q.
An algorithm A trying to answer whether s ∈ Z(M,x) can make a limited

number of queries T to the Hash oracle. The probability that every hash query
for Hash(M, gk) yields a value different from (k−s)/x mod q is at least (1− t

q )T ,
where t, T � q. So the probability does not differ from 1 in a non-negligible way.

We may conclude that except for a negligible number of cases, A will ask
the oracle for k’s such that (1) does not hold. Nevertheless, A has to make the
decision whether s ∈ Z(M,x). In this situation A is forced to make a random
guess.

This motivates the following assumption:

Proposition 1. Let M be a message and let x be a private signing key for
Schnorr signatures. Assume that given an element s < q the problem is to decide
whether there is k such that s = k−x ·Hash(M, gk) mod q, or s has been chosen
at random. Then any feasible algorithm A has at most negligible advantage to
provide a correct answer to this problem.

Schnorr signature with unknown public key. When a Schnorr signature
(s, e) is created, then first the element r = gk is computed. One could de-
sign the scheme so that (s, r) is the signature instead of (s, e). With standard
verification procedure in mind these seem to be equivalent. However, (s, r) en-
ables immediately derivation of the public key X corresponding to the signature:
e := Hash(M, r), X := (r/gs)1/e. In case of the standard signature (s, e) in order
to find X it is necessary to solve the equation

e = Hash(M, gs ·Xe) (2)

for unknown X. Note that for each Hash oracle call Hash(M, r) one can derive
a candidate for X which is (r/gs)1/Hash(M,r). We see that finding a matching
public key to the signature (s, e) of M is equivalent to finding an element r such
that Hash(M, r) = e.

Proposition 2. In the random oracle model for Hash, given (s, e), it is infea-
sible to derive the public key such that (s, e) is a Schnorr signature of a message
M or to decide that there is no such public key. It is also infeasible to decide
whether two alleged signatures (s0, e0) and (s1, e1) for messages M0 and M1
correspond to the same public key.

Scheme Description In this section we show how to insert a full signature into
the random component of a Schnorr signature. Due to the signature size, this
implies that either this inner signature must be constructed in a different way,
or that it is generated over a smaller group. In this paper we follow the second
approach as it is much simpler conceptually. A smaller group usually means a



lower degree of security, however inner signatures are used only to separate the
forged signatures from the signatures created by a legitimate SSCD. Moreover,
the public key for inner signatures remains hidden until the re-validation phase
so that attempts at breaking it are minimized.
Setup. Two groups for Schnorr signatures are used: the outer group G of prime
order q and an inner group P of prime order ρ. The bit-length of q should be at
least double of the bit-length of ρ in order to provide enough room for the inner
signature. Generators g and γ are chosen for, respectively, G and P. (Let us
remark that the outer Schnorr signature can be replaced by any scheme, where
the verifier can retrieve gk for a number k chosen at random by the signatory).
Outer key generation: it is the same as in case of the regular Schnorr scheme.
Let x be the private key and X = gx the public key for a device D.
Inner key generation: The owner of D creates a pair of keys (y, Y ), where
Y = γy and y < ρ is chosen at random.
Device initialization: The owner uploads y to D.
Signature creation: To sign a message M the following steps are executed:

1. Compute the inner Schnorr signature:
(a) choose κ < ρ at random,
(b) compute ε := Hashρ(M,γκ),
(c) compute σ := κ − y · ε mod ρ, the first component of the inner Schnorr

signature,
2. Compute the outer Schnorr signature:

(a) k := L(σ, ε), where L(α, β) means encoding of numbers α, β < ρ by a
single number smaller than q,

(b) e := Hashq(M, gk),
(c) s := k − e · x mod q,

3. Output the signature (s, e) of M .

The hash functions Hashρ, Hashq map into, respectively, Zρ and Zq.

Note 1. Any encoding function L can be used, however it should be invertible:
given L(α, β) it should be possible to derive back α and β or a few candidates
for them. For example, if L(α, β) can be defined as a number z < q chosen at
random from the numbers satisfying z = α · ρ+ β mod q.

Note 2. The elements k used for the outer Schnorr signature are chosen in a
particular way – they are not arbitrary random elements anymore. However,
according to Proposition 2, it is infeasible to distinguish such k’s from random
strings if we apply the random oracle model for Hashρ.

Outer signature verification: the standard verification procedure is applied
on input public key X and message M .
Re-validation of signatures: If the secret key x is leaked, then it is necessary
to re-validate all signatures that pass the standard verification procedure. Once
a list of such signatures is created, then the owner of D may reveal the public
key Y and the following steps are executed for each signature (s, e) from the list:



– the original ephemeral k is recomputed as k := s+ e · x mod q,
– the alleged inner signature is retrieved as (σ, ε) := L−1(k),
– (s, e) is validated iff (σ, ε) verifies positively with Y and M .

Note 3. Before the breach becomes public, an adversaryA holding the key xmay
attempt to forge signatures of D. A may create easily outer signatures verifiable
with X. However, in order to create a signature that will not be rejected during
the re-validation phase, A has to create valid inner signatures as well.

If A can break X by cryptanalysis, then it is likely that he will be able to
break Y as well, as the key length here is substantially shorter. However, Y is
kept secret and the only input A may have are some inner signatures retrieved
from the signatures created by D (note that A can compute them as he holds the
secret key x). Fortunately, according to Proposition 2 it is infeasible to derive Y
from inner signatures alone.

Note that a brute force attack to create a signature and test if it contains an
inner signature verifiable with the same (unknown) key Y as signatures created
by D is also infeasible. According to Proposition 2, there is no effective test of
this kind.

Note 4. Of course, at the time of re-validation all signatures produced allegedly
by D have to be presented. This follows from the fact that at this moment the
adversary learns Y and thereby may attempt to forge inner signatures as well,
after its successful cryptanalysis.

Of course, there is no need to publish the plaintexts of all signatures at this
moment. It is enough to publish their hashes (or a root of the Merkle tree built
on these hashes), before the re-validation procedure starts. Later, each signature
can be inspected on demand. The hashes may be simply stored in a distributed
ledger with no additional information attached.

Note 5. The Sig-in-Sign schemes based on Schnorr signatures can be extended
so that we get an additional security feature which we call chaining: during
re-validation procedure the SSCD owner must provide the full history of his
signatures – otherwise it will become evident that he is hiding some of them.
The idea is based on fluctuations of the inner signing key. A former scheme [3]
of this kind has been based on a symmetric secret shared by the SSCD and the
judge. Now we do not need such a shared key.

Note 6. For an interested reader, in the Appendix we provide an overview of
some implementation options with the currently available (and recommended)
algebraic structures such that the resulting scheme fulfils the requirements for
both the outer and inner signature.

Final remarks. Due to size constraints, this paper presents only a draft
solution to the problem of securing signatures after their corresponding signing
key has been compromised. An ongoing work is under way to present a full
working solution with additional features.

At the same time, the authors wish to draw attention to the fact that it is not
only the technical means that are required for such solutions to be implementable



– both procedural as well as legal steps must be taken in unison, which will yield
a functional solution to digital signature application in real life.
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A Appendix

In the table below we present some choice of standard groups that may be used
to implement the exapmle scheme described in Sect. 1.

Outer signature Inner signature
Sec. Curve Example Sec. Curve Example ρ2/q C.f.
level bits curve level bits curve
160 320 brainpoolP320t1 80 160 brainpoolP160t1 1.006 [4]
192 384 brainpoolP384t1 96 192 brainpoolP192t1 1.056 [4]
224 448 Curve448-Goldilocks 112 224 brainpoolP224t1 2.841 [2,4]
256 512 brainpoolP512t1 128 256 brainpoolP256t1 0.660 [4]
Table 1. Example groups for Signature-in-Signature Schnorr based schemes


