Signature-in-Signature: the Last Line of Defence in Case of Signing Key Compromise

Przemysław Błaśkiewicz, Mirosław Kutyłowski, Marcin Słowik

Wrocław University of Science and Technology
Faculty of Computer Science & Telecommunication
Poland

September 21, 2021

Fairy tale of digital signatures

SSCD: legally binding electronic signatures/seals must be created by an SSCD (Secure Signature Creation Device)

Hope: • SSCD designed so that it prevents key leakage,

 without the owner's consent SSCD will not create a signature.

Invalidation: signature/seal legally binding unless created after key revocation time.

security flaws: advances in cryptanalysis, cleptography and other trapdoors, implementation errors . . .

security flaws: advances in cryptanalysis, cleptography and other trapdoors, implementation errors . . .

latent attacks: With access to the signing key one can forge many documents *before* the signatory learns about that.

security flaws: advances in cryptanalysis, cleptography and other trapdoors, implementation errors . . .

latent attacks: With access to the signing key one can forge many documents *before* the signatory learns about that.

useless revocation: (broken) electronic signature is a perfect tool for cybercriminality . . .

security flaws: advances in cryptanalysis, cleptography and other trapdoors, implementation errors . . .

latent attacks: With access to the signing key one can forge many documents *before* the signatory learns about that.

useless revocation: (broken) electronic signature is a perfect tool for cybercriminality . . .

unless: ... we find a method to fish out forged signatures.

Our goal

Provide last line of defence

A signature system where one can tell between "legitimate" signatures and the ones created with a duplicate signing key.

Our goal

Provide last line of defence

A signature system where one can tell between "legitimate" signatures and the ones created with a duplicate signing key.

Limit the overhead

To leverage exisiting schemes and not rely on excessive external systems (blockchain, mediator schemes, ...).

Our solution

Inner

A <u>standard</u> signature contains an **inner signature** that is cryptographically undetectable — even for a holder of the (leaked) signing key

verifiable in a standard way once the signing key is revealed together with the inner public key

Inner signature verification

- given: inner public key Y, device's secret (compromised) key x are given.
- procedure: for a signature (s, e) under M:
 - recompute ephemeral k as $k := s + e \cdot x \mod q$
 - \circ retrieve inner signature(s): $(\sigma, \epsilon) := L^{-1}(k)$
 - (s, e) is valid if (σ, ϵ) verifies with Y for M.

Inner signature verification

```
given: inner public key Y, device's secret (compromised) key x are given.
```

procedure: for a signature (s, e) under M:

- **1** recompute ephemeral k as $k := s + e \cdot x \mod q$
- ② retrieve inner signature(s): $(\sigma, \epsilon) := L^{-1}(k)$
- **3** (s, e) is valid if (σ, ϵ) verifies with Y for M.

Note: L is an invertible encoding function: given $L(\alpha, \beta)$ it should be possible to derive α, β .

Properties (1)

For the outer signature k is no longer random, but:

Schnorr pseudorandomness

Given message M, secret key x and a number s, it is infeasible to decide whether exists k fulfilling $s = k - x \cdot Hash(M, g^k)$ or s is random.

Properties (1)

For the outer signature k is no longer random, but:

Schnorr pseudorandomness

Given message M, secret key x and a number s, it is infeasible to decide whether exists k fulfilling $s = k - x \cdot Hash(M, g^k)$ or s is random.

Hence: hard to tell if the inner signature is hidden in a single instance of a Schnorr signature.

Properties (2)

Adversary managed to break X (?) and calculated x, so maybe he can do the same with Y?

- recover ephemeral values for outer signagures
- use L^{-1} to create candidate pairs of inner signatures
- break them...

Properties (2)

Adversary managed to break X (?) and calculated x, so maybe he can do the same with Y?

- recover ephemeral values for outer signagures
- use L^{-1} to create candidate pairs of inner signatures
- break them...

... however:

Secrecy of the public key

- It is infeasible to derive the public key from Schnorr pair (σ, ϵ) or decide that no matching key exists.
- 2 It is infeasible to decide if two signatures $(s_0, e_0), (s_1, e_1)$ under M_0, M_1 , respectively, correspond to the same public key.

Further notes

• Subsequent inner signatures can be linked

Further notes

- Subsequent inner signatures can be linked
- Implementation is ongoing, a few workable options presented in Appendix.

Thank you for your attention!