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Motivations

Communication Complexity with limited resources;

Synchronous and asynchronous distributed
computations;

Capability of asynchronous computations.
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Systems of finite automata
- model of distributed systems

... ... ... ...2 kaa1 a $c

...
1q q q2 k

Computations of a constant number of
independent finite two-way automata;

Automata work on a shared, read-only input tape;

Cooperation: during transitions automata can send
messages;
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Model

Alphabet of messages, ∆, with symbol ⊥ meaning
no message;

Buffers have finite size (for each pair of automata);

A transition of an automaton depends on input
symbols and messages received;

communication: changes the state, deletes the
oldest messages, sends new ones and moves the
head:

δi : Qi×(∆∪ ⊥)k−1×Σ −→ Qi×(∆∪ ⊥)k−1×{L,R,⊥} .

where k is the number of automata.
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Synchronous and asynchronous
computations

Complexity measure: the number of messages sent
by all automata during computation of the system.

Synchronous Systems: central clock; for all automata
transitions are done simultaneously;

Asynchronous Systems: no common clock; automata
work independently, but for each system run, the
result must be the same.
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Examples

Message complexity:
language synchronous sys. asynchronous sys.

{anbn} O(1) Ω(n)

{w : |w|0 = |w|1} O(1) Ω(n)

{w :
√

|w| ∈ N} O(n1/2) Ω(n)
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Counting square root of word length
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Problems

Impact of asynchronism on computational power.
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Results 1

1. Asynchronous: O(1) messages is enough
for recognizing regular sets, only!

2. there are no languages with asynchronous
communication complexity o(n)\Ω(1).

Proof by analyzing simple computations:

At each moment, exactly one automaton (with the least

possible number) makes progress. It is one of many

possible asynchronous computations.
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Results 2

Even for over-linear communication, asynchronous
systems are weaker than synchronous ones.
Complexity of language Ltrans:

synchronous asynchronous
upper bound O(n) O(n3/2)

lower bound Ω(n) Ω(n3/2/ log2(n))

Lower bound proof by Kolmogorov complexity and
conversion to several protocols of the classical
two-party communication complexity.
communicational protocols.
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Results 2

Kolmogorov complexity
complexity of a word - size of a minimal encoding of
program computing this word.
K(x|y) = min{|p| : p ∈ {0, 1}∗ & T (p, y) = x}

Fact: For each n an overwhelming majority of words
of length n are “random”.

Definition: The word x is called random” if
K(x) ≥ |x| − c log(|x|).
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The language Ltrans
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 and its encoding:
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Upper bounds for Ltrans

Lemma: Recognizing Ltrans is possible with O(n)

messages on synchronous systems, and with O(n3/2)
on asynchronous systems.
Sketch of the proof

1. computing the r =
√

|w1| for input w = w1#w2 with
O(|w|1/2) messages;

2. storing the r by the distance between automata;

3. comparing rows of matrix encoded in w1 to
columns from w2.
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Finite automata on random words 1

Property: Finite automata on “long” random word

reach states “fast” or “never”.
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Finite automata on random words 2

Lemma:

Let M be a two-way DFA, x ∈ Σn, |Σ| = s; Ks(x) >

n − c logs n Let C be a configuration of M starting in the

middle of x, and M does not loop in x. If M starts com-

putation in state C in the middle of the word x, then

M reaches the state qm after at most c′ log n steps, or

does not reach the state qm until leaving x and scan-

ning some symbols not in Σ.
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Proof

input: random word x,i.e. Ks(x) > n− c logs n
⇓

Assumption: M cannot reach a state qmes fast
but still can do it outside the word

⇓
behavior of M gives the way

to compress the word x
⇓

contradiction
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Compression of the word

for long enough x there exist sequences
{xi,•}, {x′

i,•}, yi+1 = x′

i,L yi x′

i,R

where xi,• are the shortest words such that
M reaches qm without going outside
xi,L yi xi,R and M does not reach qm

without going outside x′

i,L yi x′

i,R

⇓
word x cannot contain yi
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Compression of the word

⇓
compression by giving program to compute yi

description of M , C and contents of x without xi0,
and index of xi0 (generated as yi)

⇓
K(x) < n− c logs n
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Communication protocols

1. Let S be an asynchronous system recognizing
Ltrans;

2. In ith protocol A knows matrix U/(row(i)← x), and B

knows UT = V/(col(i)← y); x and y are random
words;

3. Parties test equivalence x = y by simulating S;
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Communication protocols

4. Preprocessing: A and B exchange set of transitions
for words x and y;

5. A simulates S when possible;

6. When simulation is not possible - parties exchange
information about states of automata sending
messages called “important”.
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Lower bound for the language Ltrans

Lemma: Asynchronous systems need Ω(n3/2/ log(n))
messages to recognize a word to Ltrans.
Proof:

1. Set of protocols P1, . . . , PN . Protocols are relative to
simple computations;

2. Each protocol needs Ω(N/ log(N)) important
messages;

3. Each message can be related to at most k
protocols, where k is number of automata in the
system;
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Lower bound for the language Ltrans

Lemma: Asynchronous systems need Ω(n3/2/ log(n))
messages to recognize a word to Ltrans.
Proof(cd):

4. In block of consecutive k2 important messages there
exists at least Ω(N/ log(N)) auxiliary messages;

5. Hence, Ω( (N ·N/ log(N))/k
k2 ·N/ log(N)) messages must

be used.
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Open problems

1. Different ways of getting results (without
correctness guarantee for any computation)

2. limited asynchronism.
Partial results for multi-speed systems known.
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dioph T. Jurdziński and M. Kutyłowski.
Communication gap for finite memory devices.
accepted for ICALP 2002

Nisan E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, 1997.

Communication Complexity for Asynchronous Systemsof Finite Devices – p.26/27



Bibligraphy4

LTT T. Lam, P. Tiwari, and M. Tompa. Trade-offs
between communication and space. Journal of
Computer and System Sciences, pages 296–315,
1992.

Kolmogorov M. Li and P. Vitanyi. An Introduction to
Kolmogorov Complexity and its Applications.
Springer-Verlag, 1993.

Communication Complexity for Asynchronous Systemsof Finite Devices – p.27/27


	Motivations
	Systems of finite automata\ - model of distributed systems
	Model
	Synchronous and asynchronous computations
	Examples
	Counting square root of word length
	Problems
	Results 1
	Results 2
	Results 2
	The language $L_{trans}$
	Upper bounds for $ltrans $
	Finite automata on random words 1
	Finite automata on random words 2
	Proof
	Compression of the word
	Compression of the word
	Communication protocols
	Communication protocols
	Lower bound for the language $ltrans $
	Lower bound for the language $ltrans $
	Open problems
	Bibligraphy1
	Bibligraphy2
	Bibligraphy3
	Bibligraphy4

