

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user device Controlled Randomness – A Defense against Backdoors in Cryptographic Devices

Lucjan Hanzlik, Kamil Kluczniak, Mirosław Kutyłowski

Wrocław University of Science and Technology, Poland

MYCRYPT -Paradigm Shifting Cryptography 2016, Kuala Lumpur

Role of randomness

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user device

Randomness in cryptographic protocols

- most signature schemes, even deterministic ones (key generation, padding, ...)
- challenge-response protocols
- DH key agreement

. . .

removing randomness from crypto seems to be as difficult as building post-quantum systems (or even more difficult)

Catacrypt and randomness

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

- Idea Schnorr signature DH PACE
- Security Mallet user device

What if randomness source not ideal?

- while designing a scheme one concerns the randomness a ideal one do ideal sources exist in reality?
- what happens if the randomness is not ideal?

Catacrypt

advances in attack technology leading to severe failure of cryptography

- is catacrypt a potential future, or ...
- ... it has already happened?

Randomness and secure devices

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

- Idea Schnorr signature DH PACE
- Security Mallet user device

current approach

- if possible implement in black-box hardware
- tamper-evident or tamper-proof devices
- randomness tests/ certification / inspection by authorities to ensure proper design

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

Certification/audit

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

- Idea Schnorr signature DH PACE
- Security Mallet user device

problems with certification /audit

- requires insight into industrial secrets
- tedious and expensive
- not verifiable by an end-user
- the manufacturer, the certification body and supervisory authorities may collude against a user

From the point of view of an end-user accepting certification result is **based on trust and not on evidence**

local verifiability

the user should be able to check whether device security level is relevant for a concrete application

Threats

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signatur DH PACE

Security Mallet user device

Hardware Trojans

- inspection of the chip under microscope, layer by layer, does not reveal any inconsistency with the implementation documentation
- ... yet the randomness in some sense predictable by the attacker

Kleptographic code

- malicious cryptography
- deviations from the protocol but undetectable for the user
- e.g.: subsequent choices of random numbers entangled in a cryptographic way – an adversary holding a secret key may exploit it

RNG versus PRNG

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user device

True Random Number Generator (RNG)

- based on physical effects
- hard to build a source with uniform distribution
- even harder to test:
 - regular randomness tests detect major failures

useless against malicious constructions

recommendations

- not to be used alone
- use together with PRNG as a source of extra randomness

PRNG

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

- Idea Schnorr signature DH PACE
- Security Mallet user device

Pseudorandom Number Generator (PRNG)

verifiable – set the seed and check the output

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q ()

but how to initialize the seed?

Options for setting the seed

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user device **option 1:** the manufacturer **installs** the seed, no protection against malicious manufacturer

option 2: the user creates the seed by starting a procedure executed **internally** by the PRNG the process might be a fake – the same concerns as for option 1

option 3: the **user** uploads the seed to the PRNG the user is also a potential adversary and may try to get access to the secrets from the device

Options for setting the seed

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user device **option 4:** the user uploads a **part** of the seed while the second part of the seed is installed by the manufacturer, how to check that each part is used properly?

option 5: the user and/or the manufacturer uploads the seed, however, during its operation the PRNG modifies its state according to some number of **entropy** bits. the changes may gradually convert into a seed predictable by the adversary

PRNG security situation

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user device

Current situation

no guarantees that the PRNG is secure *by-design*

an adversary may know/guess/predict its internal state

Our goal

find effective countermeasures but avoid rebuilding cryptography from scratch – no time, no resources available

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

Scenarios to use random numbers

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea

Schnorr signature DH PACE

Security Mallet user device

option 1 choose random *r* and make it available to other participants

explicitly or implicitly addressed in the literature

option 2 choose random k, compute $r := g^k$ and present r the other party in the protocol our focus

option 3 choose random *r* and use it deterministically but not present it to other parties a challenging problem, e.g. RSA key generation process

Controlled randomness

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea

Schnorr signature DH PACE

Security Mallet user device

Idea

- the output of PRNG not used directly but subject of deterministic modification based on blinding key set by the user
- user gets control data from the device
- control data not forwarded to other protocol participants

Device setup

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea

- Schnorr signature DH PACE
- Security Mallet user device

- a PRNG *P* with a seed *y* installed by the manufacturer
- a *blinding factor* $U = g^u$ installed on the device by its owner

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

u never exposed to the device

Generating r

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea

Schnorr signature DH PACE

Security Mallet user device

k_0 is taken as the output of *P*,

 $\blacksquare k_1 := \operatorname{Hash}(U^{k_0}, i) ,$

■ Hash is a cryptographic hash function with results in the range [0, q − 1]

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

i is a counter

•
$$r' := g^{k_0},$$

• $r := (r')^{k_1}$

Verification of r

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea

Schnorr signature DH PACE

Security Mallet user device On input *r* and control parameters (r', i), the user performs the following steps:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\lambda := \operatorname{Hash}((r')^u, i)$

if $r \neq (r')^{\lambda}$, then consider the device as *faulty* or *malicious*.

note that $(r')^u = (g^{k_0})^u = (g^u)^{k_0} = U^{k_0}$ (kleptographic trick by Young and Yung)

Schnorr Signature

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user device setup: private key x and public key $y = g^x$ signature creation:

$$k := \operatorname{prng}(), \quad r := g^k$$

$$e := \operatorname{Hash}(m||g^r)$$

$$s := (k - x \cdot e) \mod q$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Schnorr Signature with controlled randomness

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signatur DH PACE

Security Mallet user device

(s, e) is the signature,
the control data are (r', i)

Example: Diffie-Hellmann with controlled randomness

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user device the device A of Alice executes the following operations:

- 1 choose *k* at random (take the output from the PRNG),
- 2 *preY_A* := g^k ,
- 3 $k' := \operatorname{Hash}(U^k, i),$
- 4 $Y_A := (preY_A)^{k'}$,
- 5 $y_A := k \cdot k' \mod q$, where q is the order of the group used

 Y_A is presented by the device A together with $preY_A$ and i

Example: PACE with CR

Card	Controller	Reader
holds: password π	password π	holds: password π entered
		by the Card owner
counter i		
	Card Setup with the Controller	
	choose $u, v, w, d < q$ at ra	andom
	$U:=g^{U}, V:=g^{V},$	
	$W:=g^w,D:=g^d$	
	<i>←</i>	
	U, V, W, D	
install U, V, W, D	retain u, v, w, d for control purposes	
	Card holds: password π counter i	CardControllerholds: password π password π counter iCard Setup with the Controller choose $u, v, w, d < q$ at ra $U := g^{u}, V := g^{v},$ $U := g^{u}, V := g^{v},$ $U := g^{w}, D := g^{d}$ \leftarrow U, V, W, D install U, V, W, D install U, V, W, D

・ロト・西ト・モート ヨー うへの

Example: PACE with CR

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signatur DH PACE

Security Mallet user

Card	Controller	Rea	ader			
Authentication Session						
$K_{\pi} := \operatorname{Hash}(0 \pi)$	$K_{\pi} := \operatorname{Hash}(0 \pi)$	Kπ	$:=$ Hash(0 $ \pi)$			
i := i + 1						
choose <i>s</i> at random						
$z := \operatorname{Enc}(K_{\pi}, s)$						
$\delta := \operatorname{prmg}() \wedge := q^{\delta}$						
0 .= ping(), = .= g						
$z := \operatorname{Hash}(D^{\delta}, i)$						
$s := \operatorname{Dec}(K_{\pi}, z)$						
	<i>→</i>	\rightarrow abo	ort if \mathcal{G} incorrect			
G	, <i>z</i> , Δ	<i>G</i> , <i>z</i>				
	control test:	S :=	$= \operatorname{Dec}(K_{\pi}, z)$			
	$z \stackrel{?}{=} \operatorname{Hash}(\Delta^d, i)$					

Example: PACE with CR

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signatu DH PACE

Securit Mallet user device

Card		Controller		Reader		
Authentication Session						
choose $y_A \in \mathbb{Z}_q$ random	at			choose $y_B \in \mathbb{Z}_q$ at random		
$k_0 := \operatorname{prng}(), K_0$	$= g^{k_0}$					
$k_1 := \operatorname{Hash}(U^{k_0})$, <i>i</i> , 1)					
$y_A := k_0 \cdot k_1$				V_ ·- α ^γ Β		
$r_A := g^{r_A}$	\leftarrow		\leftarrow	r _В .— 9 [.] р		
	YB		Υ _B			
	\rightarrow		\rightarrow			
	Υ _A , <i>K</i> ₀ , <i>i</i>		Υ _Α			
		control test:				
		$Y_A \stackrel{?}{=} K_0^{\operatorname{Hash}(K_0^U, i, 1)}$				
$egin{array}{ll} h &:= Y^{\mathcal{Y}_{\mathcal{B}}}_{\mathcal{B}} \ \hat{g} &:= h \cdot g^{\mathcal{S}} \end{array}$				$egin{array}{ll} h &:= Y^{\mathcal{Y}B}_{\mathcal{A}} \ \hat{g} &:= h \cdot g^{s} \end{array}$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Controlled Randomness

Hanzlik, Kluczniak Kutyłowsk

Problem

Idea Schnorr signat DH PACE

Security Mallet user

$$\begin{array}{c} v_{0} := \operatorname{pmg}(), V_{0} := g^{v_{0}} \\ \hline w_{0} := \operatorname{pmg}(), W_{0} := g^{w_{0}} \\ \hline \kappa := \operatorname{Hash}(V^{v_{0}}, i, 1) \\ \hline t_{0} := \operatorname{pmg}(), T_{0} := \hat{g}^{t_{0}} \\ \hline C := \operatorname{Enc}_{\kappa}(T_{0}) \\ \hline t_{1} := \operatorname{Hash}(W^{w_{0}}, C, i, 2) \\ \hline y'_{A} := \hat{g}^{v'_{A}} \\ \hline \vdots \\ check Y'_{B} \neq Y_{B} \\ \hline v_{0}, W_{0}, C \\ \hline v_{A} := \operatorname{Hash}(V_{0}^{v}, i, 1) \\ \hline T_{0} := \operatorname{Dec}_{\kappa}(C) \\ \hline t_{1} := \operatorname{Hash}(W_{0}^{w}, C, i, 2) \\ \hline y'_{A} \stackrel{i}{=} \tau_{0}^{t_{1}} \\ \hline v_{A} := \tau_{0}^{t_{1}} \\$$

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signatu DH PACE

Security Mallet user device

Manufacturer Mallet

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user device

Assumptions

- Mallet knows output of PRNG
- he does not know the blinding key

Theorem

Mallet **cannot distinguish** between Schnorr signatures created by a device implementing CR from the Schnorr signatures created with the same signing key by a device with the standard implementation (no CR).

In the first case Mallet is given the output of the PRNG, in the second case Mallet is given a random output.

Malicious user

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user device

Threat

potentially the user may steal own key **as he gets more output** from the signing device.

Theorem

If there is a user that holds a device with CR and then can create a valid signature without the device, then the same holds for the regular Schnorr signatures.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

Malicious device

Controlled Randomness

Hanzlik, Kluczniak, Kutyłowski

Problem

Idea Schnorr signature DH PACE

Security Mallet user

Leaking key-bits in the regular case

- random components might be correlated via kleptographic techniques
- few bits leaked with each signature if the device has time to make a few trials

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんぐ

Proposition

Assuming KEA1 this is the only way to cheat.

Final remarks

Controlled Randomness

- Hanzlik, Kluczniak, Kutyłowski
- Problem
- Idea Schnorr signatur DH PACE
- Security Mallet user device

- a user gets a **real opportunity** to check his devices
- it is relatively simple to make the changes in simple protocols
- for protocols where the generator is changed in a cryptographic way (like for PACE) the situation becomes complicated (protocol changes, proofs)

▲ロ → ▲周 → ▲ 国 → ▲ 国 → ● ● ● ● ●

Controlled Randomness

- Hanzlik, Kluczniak, Kutyłowski
- Problem
- Idea Schnorr signatur DH PACE
- Security Mallet user

Thanks for your attention!

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

Contact data

- Miroslaw.Kutylowski@pwr.edu.pl
- 2 http://kutylowski.im.pwr.edu.pl
- 3 http://cs.pwr.edu.pl