Fair Mutual Authentication

Jacek Cichoń, Mirosław Kutyłowski, Krzysztof Majcher

${ }^{1}$ Department of Fundamentals of Computer Science, Wrocław University of Science and Technology,
Wrocław, Poland

SECRYPT 2021

Mutual authentication

Goal of mutual authentication

- Alice and Bob communicate online
- Alice wants to know that she really talks with Bob
- Bob wants to know that he really talks with Alice

Protocol example

Authentication via a shared key K

1 Bob chooses random N_{B} and sends it to Alice,
2 Alice chooses random N_{A} and sends it and $P_{A}=\operatorname{Hash}\left(K, N_{A} \| N_{B}\right.$, "Alice, Bob") to Bob,

3 Bob computes $P_{A}^{\prime}=\operatorname{Hash}\left(K, N_{A} \| N_{B}\right.$, "Alice", "Bob") and aborts if $P_{A}^{\prime} \neq P_{A}$,

4 Bob returns $P_{B}=\operatorname{Hash}\left(K, N_{A} \| N_{B}\right.$, "Bob", "Alice") to Alice,
5 Alice computes $P_{B}^{\prime}=\operatorname{Hash}\left(K, N_{A} \| N_{B}\right.$, "Bob", "Alice") aborts if $P_{B}^{\prime} \neq P_{B}$,

6 Alice, Bob: accept if not aborted

Tracing Problem

- at step 3 Bob learns that he is talking with Alice
- until step 5 Alice learns nothing

GDPR and privacy-by-design

Mutual authentication protocol turns to be an effective tracing tool.

The location of a physical person is under protection.

No-tracing possible - by design!

Markov Fair Mutual Authentication

Idea

- Alice and Bob exchange the authenticating information bit-by-bit
- some bits sent are false at random moments

■ ... nevertheless no partner has a substantial information advantage at any moment

False bits versus cryptanalysis

!!! an observer has no idea which bits are correct
\Longrightarrow like for Learning Parity With Errors: cryptanalysis becomes substantially harder

Details

Let $P_{A}=a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ and $P_{B}=b_{1}, b_{2}, b_{3}, \ldots, b_{n}$, $p \in[0,1]$ - a probability parameter

Round i

let Δ_{i} be the difference between the number of erroneous bits sent by Alice and Bob.

■ if $\Delta_{i}=-1$, then Alice sends a_{i},
\square if $\Delta_{i}=0$ or $\Delta_{i}=1$, then Alice sends a_{i} with probability p and $\neg a_{i}$ with probability $1-p$,

- if $\Delta_{i}>1$, then Alice enters the failure state and from now on sends random bits.

Features

GDPR: no tracing, \approx same amount of personal personal data bits exchanged in each direction regardless of protocol run
lightweight: due to erroneous bits, relatively weak hash function can be used as well as small number of bits exchanged. IoT friendly!

Markov chain

J. Cichoń,
M. Kutyłowski,
K. Majcher

Differences as a Markov chain

Stochastic process $\left\{\Delta_{i}\right\}_{i}$ examined
$\Delta_{i}=$ the difference between the numbers of correct authentication bits sent by Bob and Alice up to round i

It is a Markov chain with states $\mathbf{- 1 , 0 , 1}$ and a failure state F .

Fair Execution

- optimal choice for parameter p is $\frac{2}{3}$
- process very quickly converges to the stationary distribution: $\pi=\left(\frac{2}{7}, \frac{3}{7}, \frac{2}{7}, 0\right)$
- expected fraction of incorrect bits $\approx \frac{1}{4}$
- incorrect bits well distributed

Execution with a Party Impersonating Bob

■ The most critical moment from the point of information leakage is a visit in the state -1 . In this case, Alice must send the correct bit.

- the number of visits of the state -1 during a protocol execution is a random variable Z

■ it should be small!

- for for $p=\frac{2}{3}$:

$$
E[Z] \frac{3}{2}, \quad \operatorname{Var}[Z]=\frac{27}{4}
$$

Thank you for your attention!

Acknowledgments

Thanks for Łukasz Krzywiecki for bringing attention to the problem

