

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

R

RI concept RI concept RI on German eID

Possible defense

BSI eIDAS

Insecurity of Anonymous Login with German Personal Identity Cards

Lucjan Hanzlik, Kamil Kluczniak, Mirosław Kutyłowski¹

Wrocław University of Technology, Poland

SocialSec 2015, Hangzhou

¹speaker

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Insecurity o RI

Hanzlik, Kluczniak, Kutyłowski

ID documents

E-ID TA and ChA

R

RI concept RI concept RI on German e

Possible defense

BSI eIDAS

Electronic ID documents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German elE

Possible defense

BSI eIDAS

Necessity for ID documents with a chip

traditional security printing is not reliable enough:

- race between authorities and sophisticated forgers
- a personal ID document should be used for (10) years

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

cryptographic protection – independent and relatively long lasting

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German ell

Possible defense

BSI eIDAS

Identity document with a memory chip - a simplest solution

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- the printed data stored also on the chip,
- ... and signed by the document issuer

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German elE

Possible defense

BSI eIDAS

Identity document with a memory chip - a simplest solution

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- the printed data stored also on the chip,
- ... and signed by the document issuer

Side effect: severe privacy problems

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German elE

Possible defense

BSI eIDAS

Identity document with a memory chip - a simplest solution

- the printed data stored also on the chip,
- ... and signed by the document issuer

Side effect: severe privacy problems

personal data signed by the state authorities are attractive for illegal trading – quality is guaranteed!

イロト イポト イヨト イヨト ヨー のくぐ

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German elD

Possible defense

BSI eIDAS

Identity document with a memory chip - a simplest solution

- the printed data stored also on the chip,
- ... and signed by the document issuer

Side effect: severe privacy problems

- personal data signed by the state authorities are attractive for illegal trading – quality is guaranteed!
- for durability reasons, the chip of the e-passport should communicate via a wireless interface
 - so skimming is possible

Privacy protection consequences

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

RI

RI concept RI concept RI on German elE

Possible defense

BSI eIDAS

requirements

- access to data stored in the eID must be secured by the chip of eID
- the eID has to verify that the terminal asking for data has the right to get this data

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

⇒ nontrivial (cryptographic) procedures

Privacy protection consequences

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

RI

RI concept RI concept RI on German eID

Possible defense

BSI eIDAS

requirements

- access to data stored in the eID must be secured by the chip of eID
- the eID has to verify that the terminal asking for data has the right to get this data
- ⇒ nontrivial (cryptographic) procedures

consequences:

eID chip has to execute cryptographic protocols (crypto coprocessor is a MUST)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

Privacy protection consequences

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German elD

Possible defense

BSI eIDAS

conclusion

we have to employ strong cryptography for eID documents, so why not use it **online** ?

▲□▶ ▲圖▶ ▲直▶ ▲直▶ 三直 - のへで

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

R

RI concept RI concept RI on German el

Possible defense

BSI eIDAS

ICAO standard solutions

BAC - Basic Access Control: session key derived from a personal data readable via an optical channel (relatively insecure protocol)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

R

RI concept RI concept RI on German el

Possible defense

BSI eIDAS

ICAO standard solutions

- BAC Basic Access Control: session key derived from a personal data readable via an optical channel (relatively insecure protocol)
- EAC Extended Access Control: both Chip Authentication and Terminal Authentication - to authenticate both the eID chip and the terminal in a cryptographic way

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

R

RI concept RI concept RI on German el

Possible defense

BSI eIDAS

ICAO standard solutions

- BAC Basic Access Control: session key derived from a personal data readable via an optical channel (relatively insecure protocol)
- EAC Extended Access Control: both Chip Authentication and Terminal Authentication - to authenticate both the eID chip and the terminal in a cryptographic way
- PACE Password Authenticated Communication Establishment: the user has to enter the password to the reader, protocol immune against offline attacks

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

R

RI concept RI concept RI on German el

Possible defense

BSI eIDAS

ICAO standard solutions

- BAC Basic Access Control: session key derived from a personal data readable via an optical channel (relatively insecure protocol)
- EAC Extended Access Control: both Chip Authentication and Terminal Authentication - to authenticate both the eID chip and the terminal in a cryptographic way
- PACE Password Authenticated Communication Establishment: the user has to enter the password to the reader, protocol immune against offline attacks
- CAM PACE combined with Chip Authentication, but more efficient than the protocol executed separately

E-Passports limitations

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German e

Possible defense

BSI eIDAS

the focus of ICAO specification

border control - document inspection

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- enabling automatic border control
- no anonymity

German personal ID card

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German elE

Possible defense

Main components

- Terminal Authentication checking terminal's access rights
- **Chip Authentication** checking originality of a chip
- Restricted Identification anonymous authentication
- PACE enabling chip operation with a password as well as place for qualified signatures

Specifications:

BSI Technische Richtlinie 03110: Advanced Security Mechanisms for Machine Readable Travel Document

Terminal Authentication v. 2 protocol specification of BSI

Chip Authentication

Insecurity of RI	[terminal		e-ID chip
					static key pair (<i>SK_{PICC}</i> , <i>PK_{PICC}</i>)
		6.		<i>PK_{PICC}</i>	
		7.		<i>₽K_{PCD}</i>	
		8.	$\mathcal{K} := (\mathcal{PK}_{\mathcal{PICC}})^{\widetilde{\mathcal{SK}_{\mathcal{PCD}}}}$		$\mathcal{K} := (\widetilde{\mathcal{PK}_{PCD}})^{SK_{PlCC}}$
		9.			choose r' at random
					$\mathcal{K}_{MAC} := Hash_3(\mathcal{K}, r')$ $TAG := MAC_{\mathcal{K}_{MAC}}(\widetilde{PK_{PCD}})$
				<i>TAG,r′</i>	
		10.	$\mathcal{K}' := \textit{Hash}_1(\mathcal{K}, r')$ $\mathcal{K}_{\textit{MAC}} := \textit{Hash}_3(\mathcal{K}, r')$		
		11.	$TAG \stackrel{?}{=} MAC_{\mathcal{K}_{MAC}}(\widetilde{\mathcal{PK}_{PCD}})$		

Insecurity o RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

R

RI concept RI concept RI on German el

Possible defense

BSI eIDAS

Restricted Identification

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Restricted Identification concept

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German el

Possible defense

BSI eIDAS

Domains

each domain is an autonomous system such that

- user's personal data are processed only within the system (unless a special event occurs)
- within a domain the user appears under his domain specific identity/pseudonym
- it should be infeasible to link identities of one user in two different domains

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Restricted Identification concept

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German eIE

Possible defense

BSI eIDAS

Domains

each domain is an autonomous system such that

- user's personal data are processed only within the system (unless a special event occurs)
- within a domain the user appears under his domain specific identity/pseudonym
- it should be infeasible to link identities of one user in two different domains

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Background

- full disclosure of identity is not really necessary
- unnecessary data flow is a privacy risk
- a kind of privacy-by-design

German Restricted Identification on personal ID cards

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept **RI on German**

Possible defense

BSI eIDAS

Restricted Identification:

- e-ID card computes a unique password for each domain
- **2** the terminal of the domain:
 - a) checks that it is talking with an e-ID card
 - b) receives a password
 - c) checks the password against its blacklist

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Restricted Identification

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

E-ID TA and ChA

RI

RI concept RI concept RI on German e

Possible defense

BSI eIDAS

Core RI procedure

(notation according to BSI specification)

Terminal		e-ID chip
holds \mathcal{K}'		holds \mathcal{K}'
$\sigma := \text{ENC}_{\mathcal{K}'}(\mathcal{PK}_{\text{sector}})$	$\xrightarrow{\sigma}$	
		$PK_{ ext{sector}} := ext{DEC}_{\mathcal{K}'}(\sigma)$
		$I_{ID}^{\text{sector}} := \text{Hash}((PK_{\text{sector}})^{SK_{ID}})$
		$\sigma' := \operatorname{ENC}_{\mathcal{K}'}(I_{lD}^{\operatorname{sector}})$
$f_{ID}^{\text{sector}} := \text{DEC}_{\mathcal{K}'}(\sigma')$	$\overleftarrow{\sigma'}$	
check if f_{ID}^{ector} is on sector's black-list		

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 \mathcal{K}' is a shared key that must be established before running RI

German Restricted Identification

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept **RI on German e**

Possible defense

BSI eIDAS

Security background

since the chip is assumed to be secure, we have to believe that the eID really sends f^{ector}_{ID} := Hash((PK_{sector})^{SK_{ID}}) using its private RI key SK_{ID}

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

German Restricted Identification

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept **RI on German eID**

Possible defense

Blacklist

a list of values Hash((PK_{sector})^x), where x belongs to a banned person

Blacklisting a user

the Issuing Authority holds the public key PK = g^x of that user

• $PK_{\text{sector}} = g^{r \cdot R}$, where

- r is known to the Issuing Authority
- R is known to the domain authority
- two steps:
 - the Issuing Authority computes $P_1 = PK^r$
 - the domain authority computes P_1^R

note that $P_1^R = PK^{r \cdot R} = (g^{r \cdot R})^x = (PK_{sector})^x$

Restricted Identification Establishing a shared key

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

R

RI concept RI concept RI on German eID

Possible defense

Blacklisting properties:

- the Issuing Authority does not learn the password of the revoked user
- the terminal has to know that it is really talking with a valid elD otherwise a random response would be accepted as a valid pseudonym – it is unlikely that it appear on the blacklist

Challenge

- the terminal must check that it is talking with a valid eID
- there are many authentication protocols but how to hide the identity of the chip? standard solutions use something (e.g. a public key) that would link RI passwords in different domains

Group key

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept **RI on German e**

Possible defense

BSI eIDAS

Design decision

authentication of an eID via Chip Authentication with a group key

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

it does not mean using group signatures

- a large number of eIDs share the same group key
 - a big anonymity set

Realistic attack assumptions

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German el

Possible defense

BSI eIDAS

Are group keys really protected?

- a really powerful adversary can break into an eID chip and read its secrets
 - breaking into just one eID of the group is enough!
- if a group key has to be installed in a large number of devices, it must be stored and protected outside the eIDs
- it suffices to provide just one tampered raw eID for personalization – it would reveal the secret (group key) in response to a secret command

what would be the consequences?

Known Attack: creating a fake ID

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

RI

RI concept RI concept RI on German e

Possible defense

A fake elD

- contains a valid group key
- provides a random password during execution of the RI protocol

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

Properties

- the fake eID works as long as RI is used
- impossible to blacklist the fake eID

Main Attack

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German e

Possible defense

BSI eIDAS

A powerful adversary

- learns the group key
- eavesdrops the communication with a domain server

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Main Attack ChA Phase

Observation

- the elD derives the session key with the group key *SK*_{group} no ephemeral random values used
- ⇒ Adversary knowing SK_{group} can derive the session key K from eavesdropped communication

Main Attack RI Phase

Insecurity of RI			
Hanzlik, Kluczniak, Kutyłowski	Terminal		e-ID chip
	holds \mathcal{K}'		holds \mathcal{K}'
	$\sigma := \text{ENC}_{\mathcal{K}'}(\mathcal{PK}_{\text{sector}})$	$\xrightarrow{\sigma}$	
			$PK_{ ext{sector}} := ext{DEC}_{\mathcal{K}'}(\sigma)$
			$f_{ID}^{\text{sector}} := \text{Hash}((PK_{\text{sector}})^{SK_{ID}})$
			$\sigma' := \text{ENC}_{\mathcal{K}'}(I_{ID}^{\text{lector}})$
RI on German eID	restor	σ'	
	$P_{ID}^{\text{ector}} := \text{DEC}_{\mathcal{K}'}(\sigma')$		
	CHECK II ID IS ON SECTOR'S DIACK-IIST		

Observation

■ the Adversary knows K'!

the Adversary can decrypt σ' and get the domain password f^{ector}_{ID} of this user

Main Attack exploitation phase

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German

Possible defense BSLeIDAS

The Adversary

connects to the server with user's account

runs the RI protocol, with minor change:

	la a la la 161
	noids <i>L'</i>
$\xrightarrow{\sigma}$	
	$PK_{\text{sector}} := \text{DEC}_{\mathcal{K}'}(\sigma)^{-2}$
	take I_{ID}^{sector} learned in the previous phase of the attack
	$\sigma' := \text{ENC}_{\mathcal{K}'}(h_{D}^{\text{sector}})$
σ'	
0	$\xrightarrow{\sigma}$

²the step may be ignored, as the Adversary knows PK_{sector} = • = •

Main Attack

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept **RI on German elD**

Possible defense

Attack potential

an attacker may login to the user's account after a purely passive attack

It looks like an obvious trapdoor in the German personal identity cards.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Insecurity o RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

R

RI concept RI concept RI on German ell

Possible defense

BSI eIDAS

Possible defense

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Modified version of the protocol Chip Authentication phase

RI Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

R

RI concept RI concept RI on German ell

Possible defense

BSI eIDAS

	Terminal i		Chip		
	Chip Authentication Phase				
			choose ρ at random		
			$Y'_{group} := Y^{ ho}_{group}$		
		, Y'group			
6.	$\mathcal{K} := (Y'_{group})^{\widetilde{x_{i,T}}}$		$\mathcal{K} := (\widetilde{Y}_i)^{x_{group} \cdot ho}$		
	choose r' at random				
	$\mathcal{K}_{MAC} := Hasn(\mathcal{K}, T)$	m/			
	Tag := MAC($\mathcal{K}_{MAC}, Y'_{group}$)	$\xrightarrow{\operatorname{Tag},r}$			
	0,11		$\mathcal{K}_{MAC} := Hash(\mathcal{K}, r')$		
			Tag $\stackrel{?}{=}$ MAC($\mathcal{K}_{MAC}, Y'_{aroup}$)		
	$\mathcal{K}_{Enc} := \operatorname{Hash}_1(\mathcal{K}, r')$		$\mathcal{K}_{Enc} = \operatorname{Hash}_1(\mathcal{K}, r')$		

◆ロト ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへで

Modified version of the protocol Restricted Identification phase

Insecurity o RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

RI

RI concept RI concept RI on German e

Possible defense

BSI eIDAS

		Chip			
Restricted Identification phase					
7. 8.	$\sigma := \operatorname{Enc}_{\mathcal{K}_{\operatorname{Enc}}}(Y_{\operatorname{sector}}) \qquad \xrightarrow{\sigma}$	$Y_{\mathrm{sector}} := \mathrm{Dec}_{\mathcal{K}_{\mathrm{rec}}}(\sigma)$			
		$ID_{\text{User}} := \text{Hash}_2((Y_{\text{sector}})^{x_{\text{RI}}})$ $\sigma' := \text{Enc}_{\mathcal{K}_{\text{Enc}}}(ID_{\text{User}})$			
	<i>σ',ο</i>	$\sigma'' := \operatorname{Enc}_{\mathcal{K}_{\operatorname{Enc}}}(\rho)$ $\frac{\cdots, \sigma'''}{\sigma'''} = \operatorname{Enc}_{\mathcal{K}_{\operatorname{Enc}}}(Y_{group})$			
9.					
	check if $Y^{\rho}_{group} \stackrel{?}{=} Y'_{group}$				
data exchange					
whole communication secured by encryption with key \mathcal{K}_{Enc}					

Modified version of the protocol properties

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

R

RI concept RI concept RI on German ell

Possible defense

BSI eIDAS

Properties

- authentication of ChA phase becomes effective <u>after</u> establishing a secure channel
- the session key resulting from Chip Authentication depends on ephemeral values on the side of eID and therefore cannot be derived from the group key alone

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Insecurity o RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

R

RI concept RI concept RI on German el

Possible defense

BSI eIDAS

BSI eIDAS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Patch by BSI

Insecurity of

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German elE

Possible defense

BSI eIDAS

Idea: authenticating the chip via domain signature

the terminal can check that the signature comes from a chip personalized by the document issuer

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

- no unique public key for a chip
- the public key used for signature verification derived separately for each domain (sector)

Patch by BSI

Insecurity of

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

R

RI concept RI concept RI on German elD

Possible defense

BSI eIDAS

Idea: authenticating the chip via domain signature

- the terminal can check that the signature comes from a chip personalized by the document issuer
- no unique public key for a chip
- the public key used for signature verification derived separately for each domain (sector)

Properties: of the solution from BSI TR

keys for an eID chip derived from group secret key

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

- ... yet each eID holds different keys
- leaking secret group key does not enable to impersonate a user

Domain signatures

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

R

RI concept RI concept RI on German eID

Possible defense

BSI eIDAS

of course domain signatures have also different applications

a good topic for another (long) talk

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

in BSI TR 03110 renamed as *pseudonymous signatures*

BSI algorithm

Insecurity of BI

- Hanzlik, Kluczniak, Kutyłowski
- ID documents E-ID TA and ChA

R

- RI concept RI concept RI on German el
- Possible defense
- BSI eIDAS

Issuer's setup

- the secret keys z and x
- public keys g_1 , $g_2 = g_1^z$, $y = g_1^x$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

BSI algorithm

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German elE

Possible defense

BSI eIDAS

Issuer's setup

- the secret keys z and x
- **u** public keys g_1 , $g_2 = g_1^z$, $y = g_1^x$

Issuing an eID for user i

- choose $x_{2,i} \in \mathbb{Z}_p$ at random
- compute $x_{1,i} = x z \cdot x_{2,i}$
- install $(x_{1,i}, x_{2,i})$ in the eID of the user *i*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

BSI algorithm core algorithm

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German elE

Possible defense

BSI eIDAS

Issuer's setup

- the secret keys z and x
- **u** public keys g_1 , $g_2 = g_1^z$, $y = g_1^x$

Issuing an eID for user i

- choose $x_{2,i} \in \mathbb{Z}_p$ at random
- compute $x_{1,i} = x z \cdot x_{2,i}$
- install $(x_{1,i}, x_{2,i})$ in the eID of the user *i*.

Signing *m* by Alice for domain *D*

• create domain specific pseudonym $dsnym = D^{x_{1,i}}$

- choose t_1 , t_2 at random, $a_1 = g_1^{t_1} g_2^{t_2}$, $a_2 = D^{t_1}$
- $\blacksquare c = \operatorname{Hash}(D, dsnym, a_1, a_2, m)$
- $\bullet \ s_1 = t_1 c \cdot x_{i,1}, \, s_2 = t_2 c \cdot x_{i,2}$
- output the signature (c, s_1, s_2)

BSI algorithm

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

RI

RI concept RI concept RI on German eID

Possible defense

BSI eIDAS

Signing *m* by Alice for domain *D*

- create domain specific pseudonym $dsnym = D^{x_{1,i}}$
- choose t_1 , t_2 at random, $a_1 = g_1^{t_1} g_2^{t_2}$, $a_2 = D^{t_1}$
- $c = \text{Hash}(D, dsnym, a_1, a_2, m)$

$$\bullet \ s_1 = t_1 - c \cdot x_{i,1}, \ s_2 = t_2 - c \cdot x_{i,2}$$

• output the signature (c, s_1, s_2)

Signature verification

- compute $a_1 = y^c \cdot g_1^{s_1} \cdot g_2^{s_2}$, $a_2 = dsnym^c \cdot D^{s_1}$
- output valid if c = Hash(D, dsnym, a₁, a₂, m) and dsnym not on a blacklist

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Seclusiveness problem

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

RI

RI concept RI concept RI on German elE

Possible defense

BSI eIDAS

Attack:

break into just two elDs

use private keys x_{1,i}, x_{2,i} and x_{1,j}, x_{2,j} to compute x, z based on the equations

$$\begin{aligned} x &= x_{1,i} + z \cdot x_{2,i} \\ x &= x_{1,j} + z \cdot x_{2,j} \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

... and create any number of fake elDs that would create proper domain signatures

Undeniability problem

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID documents E-ID TA and ChA

R

RI concept RI concept RI on German elE

Possible defense

BSI eIDAS

Proof of interaction:

- every authentication based on signature leaves undeniable proof of user's activity
- sometimes the proof is required but otherwise it is a security threat in the system as the signature can serve as evidence against third parties

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

security rule: one should avoid generating data that can be misused

Insecurity of RI

Hanzlik, Kluczniak, Kutyłowski

ID document E-ID TA and ChA

R

RI concept RI concept RI on German eIE

Possible defense

BSI eIDAS

Thanks for your attention!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Contact data

1 Miroslaw.Kutylowski@pwr.edu.pl

2 http://kutylowski.im.pwr.edu.pl