

Ghost train

Błaśkiewicz (al

Anonymous communica tion

anonymous communication too challenge

Beimel-Dolev

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding

Security

Conclusions

Ghost Train for Anonymous Communication

Przemysław Błaśkiewicz, Mirosław Kutyłowski, Jakub Lemiesz, Małgorzata Sulkowska

Wrocław University of Science and Technology, Poland

SpaCCS 2016, Zhangjiajie

Protection of traffic data

Ghost train

Błaśkiewicz e al

Anonymous communication

challenge Beimel-Dolev

Drunk

Ghost Train Architecture Message encoding

Security

Conclusion

Confidentiality

- encryption: easy to hide the contents of messages exchanged over public networks
- traffic volume: hard to hide
 - a dummy traffic is only a partial solution

Communication management

- **■** communication protocols:
 - the destination address almost always given explicitly
 - the source address frequently given but not authenticated
- routing protocols: oriented on efficiency and not data protection

Who is talking with whom

Ghost train

Błaśkiewicz e al

Anonymous communication

challenge

Busses

Drunk Motorcyclis

Ghost Train
Architecture
Message encoding
Decoding

Securit

Conclusions

information on who is talking with whom is crucial

Law enforcement:

- May 11, 2014: Speaking at a debate in April, former intelligence boss and retired Gen. Michael Hayden admitted the NSA uses metadata to "kill people."
 - metadata are (sender,recipient) data, and not the communication contents
- forensics: connection data used to deanonymize

Dark side of traffic analysis

Ghost train

Błaśkiewicz e al

Anonymous communication

challenge Reimel-Doley

Busses

Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusion

- business intelligence unfair competition, business attacks creation of monopolies based on access to data and not on production/services quality
- organized crime traffic data may ease committing crime and reduce the risks
- national security it is not only security agencies that may use traffic data the terrorists might be more advanced in this field
 - higher budget
 - highly paid specialists
 - no legal limitations (e.g. personal data protection rules)

Broadcast

Ghost train

Błaśkiewicz e al

Anonymous communication

communication too challenge

Beimel-Dolev Busses

Drunk Motorcyclis

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusio

Broadcasting based protection

- broadcast data to all e.g. radio, satellite transmission
- anybody in the transmission range can be the recipient

- careful choice of the encryption schemee.g. RSA hybrid encryption is not applicable
- the sender is not protected
- if the communication is bidirectional, one may derive (sender,receiver) candidate pairs
- costly method, limited bandwidth

Token ring

Ghost train

Błaśkiewicz e al

tion
anonymous
communication too

Beimel-Dolev Busses

Drunk Motorcyclis

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusion

Token ring

- the servers organized in a single ring
- each encrypted message travels around the whole ring
- the recipient of the message can see the ciphertext while forwarding perfect destination anonymity

- lack of scalability
- communication latency
- no sender anonymity

Onion routing

Ghost train

Błaśkiewicz e al

Anonymous communica tion

challenge

Busses

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusion

Onion routing technique

- a message sent over a random path to its destination
- the encryption method guarantees that an intermediate node learns only the next node on the path (the previous node learnt too)
- the encryption method guarantees that cryptanalytic linking of incoming and outcoming messages infeasible for an observer

- based on node mixing: many messages must be processed by a node at the same time otherwise easy to recover the path based on time sequence
- does not hide the senders and the receivers
- security proofs concern only an adversary that can see the message on the communication links but not their transmitting time

TOR

Ghost train

Błaśkiewicz e al

tion
anonymous
communication tool

Beimel-Dolev Busses

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusions

TOR system

- a system implementing onion routing,
- connection based protocol:
 - first a connection is built using Onion Routing like technique
 - when the connection is established, then a transmission starts
 - on intermediate nodes: ciphertext change (symmetric method)
 - intermediate nodes learn only the neighbors on the path

- when a transmission terminates, then traffic decreases on the whole path
- if only one link broken at a time, then connection visible for a passive adversary
 - moreover: it suffices to monitor the source and the destination servers only

Privacy challenge

Ghost train

Błaśkiewicz al

Anonymous communication
anonymous communication to challenge

Beimel-Dole Busses

Drunk Motorcyclis

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusi

How to secure the traffic against traffic analysis?

Practice

Existing tools give only a basic protection, ineffective against a powerful adversary.

The users (e.g. of TOR) may falsely assume that they are anonymous.

Theory

there is no good theoretical solution so far.

(the situation much different from, say, the state-of-the-art in encryption technologies)

Beimel-Dolev Busses

Ghost train

Błaśkiewicz e al

communication

Beimel-Dolev Busses

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusion

Amos Beimel and Shlomi Dolev. Buses for anonymous message delivery. J. Cryptology, 16(1):25-39, 2003.

Bus

- many seats
- each seat can hold a single ciphertext
- a bus travels through the network
- when a bus reaches the destination of a ciphertext, the destination node can decrypt it and understand

Buses

Ghost train

Błaśkiewicz e al

communication anonymous communication tool challenge

Beimel-Dolev Busses

Orunk Motorcyclist

Ghost Irain
Architecture
Message encoding
Decoding

Securit

Conclusion

Versions

- for a token ring of N nodes: N(N-1)/2 seats, each seat for a pair of nodes
- for random walks: no assigned seats, the number of seats much smaller, if no free seat then overwriting a random seat
- a combination of many intersecting rings: transfer between busses

- some care necessary when choosing encryption method (ciphertext properties may betray the destination)
- either a huge bus or overwriting possible
- well defined network needed or random walks
- random walk works well for certain graphs (with expander properties)
- hiding senders requires inserting a fake ciphertext (taking a seat)

Drunk Motorcyclist

Ghost train

Błaśkiewicz (al

Anonymous
communication
anonymous

Beimel-Dolev

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding

Security

Conclusion

Adam Young and Moti Yung. The drunk motorcyclist protocol for anonymous communication. IEEE Conference on Communications and Network Security, 2014.

Strategy

- drunk motorcyclist performs a random walk over the network
- motorcycle carries a single ciphertext, never changed after sending
- a counter (time to die) each motorcyclist makes a fixed number of steps
- the ciphertext is sent many times necessary to make sure that some ciphertext arrives at its destination

- in order to hide sending activity one has to sent drunk motorcyclist at each moment.
- the counter betrays the senders even if no full view of the network

Ghost Train architecture

Ghost train

Błaśkiewicz (al

Anonymous communication

challenge Beimel-Dolev

Beimel-Dolev Busses

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusions

A ghost train

- 1 performs a random walk through the network
- 2 holds a long bit array

A network node

upon ghost train arrival:

- derives messages (if any) from the bit array
- changes some number of bits in the bit array
 - in order to encode a message for someone
 - or to hide sender's inactivity

Ghost train information fading

Ghost train

Błaśkiewicz e al

Anonymous communication

challenge

Busses

Drunk Motorcyclis

Ghost Train
Architecture
Message encoding
Decoding

Securit

Conclusion

The classical concept

- in a data stream each information has an assigned place
- overwriting destroys completely the old information and puts the new one on this place

The ghost data concept

- the places assigned to different informations overlap
- through overwriting the old data fade and eventually disappear
- one overwriting operation affects many old data but each of them only slightly
 - ... with high probability

Comparison

classical approach: message intact or completely lost qhost approach: messages decay over the time

Ghost train encoding details

Ghost train

Błaśkiewicz al

communication anonymous communication to

Beimel-Dole Busses

Drunk Motorcyclis

Ghost Train

Message encoding

Security

Conclusion:

Communicating nodes

 \blacksquare nodes x, y share a key K_{xy}

Data array P.B carried by a ghost train P

- P.B has length n, it always stores n/2 ones and n/2 zeroes
- x encodes a bit b in P.B by setting the contents of P.B to b at the pseudorandom positions derived with the secret K_{xy}
- for the sake of balance of zeroes and ones, some changes on other random positions
- P.B is a kind of a Bloom filter

Ghost train encoding details

Ghost train

Błaśkiewicz e al

tion
anonymous
communication too

Beimel-Dole

Drunk Motorcyclis

Ghost Train

Message encoding

Security

Conclusions

Train P metadata

- identifier *P.id*
- history P.H the list of recent nodes visited by the train P

time divided into epochs - within an epoch the same bit is sent

Ghost train

Ghost train

Błaśkiewicz e al

Anonymous communication

anonymous communication tools challenge

Beimel-Dole Busses

Motorcyclis
Chost Train

Architecture

Message encoding

Decoding

Security

Conclusio

```
Arguments: epoch index i, slot index t, list of destinations L, received train P
   Inspect the history P.H and determine node y \in L for which train P has not been
    used in epoch i and bit to be sent to y
   if y \neq null then
          S \leftarrow \mathbf{Hash}(K_{xy}, i, t, P.id)
3
   else
          choose S and bit at random;
   ones \leftarrow the number of ones on positions S in P.B;
   set all positions from S in P.B to bit;
   if bit = 1 then
          ones \leftarrow k – ones:
   while ones > 0 do
10
11
          r \leftarrow rand[1, n]:
          if r \notin S \land P.B[r] = bit then
12
                 P.B[r] \leftarrow 1 - bit;
13
                 ones \leftarrow ones -1:
14
   push((x,t), P.H);
                                     /* push (x,t) to 1st position in P.H */
15
```


Ghost train encoding

Ghost train

Błaśkiewicz al

communication anonymous communication too challenge

Beimel-Dolev Busses

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusio

properties observed

Bit hiding

- some number of 1's changed to 0,
- the same number of 0's changed to 1
- ... so it is not observable which bit has been encoded

Location hiding

- about half of the positions of S is not observable they already contain the right bit
- lack of this information make cryptanalysis (e.g. brute force) much harder

Ghost train decoding procedure

Ghost train

Błaśkiewicz e al

communicaion anonymous communication tools

Beimel-Dolev Busses

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusic

```
Arguments: i, t, L, P

foreach node\ y \in L do

foreach position\ j of an entry (y, \tau) in P.H do

if j \geq t then r \leftarrow 1;

else r \leftarrow 2;

S_r \leftarrow h(K_{yx}, i - 2 + r, \tau, P.id);

y.X_r \leftarrow y.X_r + the number of ones in <math>P.B on positions from S_r;

y.b_r \leftarrow y.b_r + k;
```

idea: count the number of ones in the areas assigned to transmitted bit final result: statistics over the whole epoch, majority voting

Passive observer

Ghost train

Błaśkiewicz e al

communication anonymous communication too challenge

Beimel-Dolev Busses

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusions

Indistinguishability

- a passive adversary that observes the ghost train entering a node and leaving the node
- Indistinguishability Game: two options
 - the protocol executed
 - 2 the derivation of S replaced by random choice
- argument:
 - if the adversary cannot distinguish between both options, then the same attack advantage for the 2nd option
 - 2nd option: no advantage for the adversary
 - distinction between the options ↔ PRNG is cryptographically weak

Malicious nodes

Ghost train

Błaśkiewicz al

tion
anonymous
communication to

Beimel-Dolev Busses

Drunk Motorcyclis

Architecture

Message encoding

Security

Conclusions

Possibilities

- impossible to change many bits (without being detected)
 - infeasible to "attack" positions corresponding to one message – the positions are unknown

Message lifetime

Ghost train

Błaśkiewicz e al

Anonymous communication

anonymous communication too challenge

Beimel-Dole Busses

Drunk Motorcyclis

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusions

Challenge

assume that the ghost train has done T hops after leaving x until it reaches y

what is the probability that the large majority of k positions communicated to y has the value set by x?

Goal

for s packets received, \mathbb{X} standing for the number of positions, where the original value survives:

$$\Pr[\mathbb{X} \ge f \cdot s \cdot k] \ge 1 - \delta$$
 and $\mathbb{P}[\mathbb{X} \le (1 - f) \cdot s \cdot k] \le \delta$

Message lifetime

Ghost train

Błaśkiewicz al

communication anonymous communication to challenge

Beimel-Dolev Busses

Drunk Motorcyclis

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusions

Road map

- for a given position derive the expected value of the bit stored there after T hops
- estimate the variance of this random variable
- derive the probability for correct decoding

quite tight analytic results in the paper

Example parameter settings

Ghost train

Błaśkiewicz e al

tion
anonymous
communication too

Beimel-Dole

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusions

example

- N the network size
- epoch length $T = \left\lceil \sqrt{N \log N} \right\rceil$
- Bloom filter length $n \sim \left\lceil \sqrt{N \log N} \log N \right\rceil$

then

probability of successful message delivery

$$\sim 1 - \frac{1}{N}$$

discussion

- the epoch is relatively long in order to guarantee message delivery and high security margin
- filter size is not a big issue (even for millions of nodes)

Conclusions

Ghost train

Błaśkiewicz (al

communication
anonymous
communication too

Beimel-Dolev Busses

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusions

Achieved

- fully oblivious routing
- encryption method for multiple ciphertexts that does not assign separate locations for each ciphertext
- full control over the communication volume, no dummy messages
- hard to perform denial of service and kill selectively ciphertexts from a given node

Challenges

- efficiency of communication (random walk)
- channel bandwidth

Lessons learnt

Ghost train

Błaśkiewicz al

communication anonymous communication too challenge

Beimel-Dolev Busses

Drunk Motorcyclist

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusions

Application for malicious purposes

- a growing threat of communication over the public network for evil purposes
- e.g. between malware
- random walks do not betray communicating parties
- feasibility of limited bandwidth communication
- ciphertexts need not to have fixed location and can be hidden in noise

Ghost train

Błaśkiewicz e al

Anonymous communication

challenge

Busses

Drunk Motorcyclis

Ghost Train
Architecture
Message encoding
Decoding

Security

Conclusions

Thanks for your attention!

Contact data

- 1 Miroslaw.Kutylowski@pwr.edu.pl
- 2 http://kutylowski.im.pwr.edu.pl
- 3 http://cs.pwr.edu.pl

