

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution

Construction

Conclusion:

Local Self -Organization with Strong Privacy Protection

Lucjan Hanzlik, <u>Kamil Kluczniak</u>, Mirosław Kutyłowski, Shlomi Dolev

Wrocław University of Science and Technology, Poland Ben-Gurion University, Israel

IEEE Trustcom 2016, Tianjin, China

Vehicular Ad Hoc Networks (VANET)

Local Self -Organization with Strong Privacy Protection

Introduction

Applications

- Virtual brake lights
- Traffic information systems
- Virtual traffic lights
- and many more...

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Concept

Construction

Conclusions

Threats for Authentication to VANET

 <u>Seclusiveness</u> - sending fraudulent signals or forging on-board Units (Virtual Vehicle). Only a legal manufacturer can issue new On-Boar Units.

14

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Concept

Construction

Conclusions

Threats for Authentication to VANET

- <u>Seclusiveness</u> sending fraudulent signals or forging on-board Units (Virtual Vehicle). Only a legal manufacturer can issue new On-Boar Units.
- Unforgeability impersonating another vehicle.

1/1

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Concept

Construction

Conclusions

Threats for Authentication to VANET

- <u>Seclusiveness</u> sending fraudulent signals or forging on-board Units (Virtual Vehicle). Only a legal manufacturer can issue new On-Boar Units.
- Unforgeability impersonating another vehicle.
- <u>Privacy/Pseudonymity</u> vehicles appear under different pseudonyms at each location/time.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, Kamil Klucznia Mirosław Kutyłowski,

Introduction

Solution

Construction

Conclusions

Threats for Authentication to VANET

- <u>Seclusiveness</u> sending fraudulent signals or forging on-board Units (Virtual Vehicle). Only a legal manufacturer can issue new On-Boar Units.
- Unforgeability impersonating another vehicle.
- <u>Privacy/Pseudonymity</u> vehicles appear under different pseudonyms at each location/time.
- <u>Accountability</u> Deanonymization in case of misbehaviour and undeniability of ones actions.

Local Self -Organization (Virtual Traffic Lights)

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

No to at a co

Construction

Conclusions

Goal: Establish an ordering of vehicles.

- Participants should not have any advantage above others.
- Clone detection.

Local Self -Organization (Virtual Traffic Lights)

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Kluczni</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Concept

Constructio

Goal: Establish an ordering of vehicles.

- Participants should not have any advantage above others.
- Clone detection.

Existing solutions (Leader election)

Run a leader election protocol \rightarrow The leader decides the ordering \rightarrow requires Honest Majority.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Doley

Introduction

Solution Concept

Construction

Conclusion

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Kluczni:</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution Concept

Constructio

Conclusion

Consider *n* participating vehicles on a crossroad at location location at time time.

■ Each vehicle has a private key *sk* and a certificate *cert* on it.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction Solution

Concept

Conclusion

- Each vehicle has a private key *sk* and a certificate *cert* on it.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction Solution

Construction

Conclusion:

- Each vehicle has a private key *sk* and a certificate *cert* on it.
- A vehicle broadcasts his pseudonym $nym \leftarrow (H(\text{location}) \cdot H(\text{time}))^{sk} \text{privacy}.$
 - It is infeasible to link the pseudonyms with a particular user.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution

Concept Construction

Conclusions

- Each vehicle has a private key *sk* and a certificate *cert* on it.
- - It is infeasible to link the pseudonyms with a particular user.
- A vehicle signs the location, time and additional data accountability.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Kluczni</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction Solution

Concept

Consider *n* participating vehicles on a crossroad at location location at time time.

- Each vehicle has a private key *sk* and a certificate *cert* on it.
- A vehicle broadcasts his pseudonym $nym \leftarrow (H(\text{location}) \cdot H(\text{time}))^{sk} \text{privacy}.$
 - It is infeasible to link the pseudonyms with a particular user.
- A vehicle signs the location, time and additional data accountability.

The signature proofs that:

the signer knowns the secret key - unforgeability

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Kluczni</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction Solution

Concept

Consider *n* participating vehicles on a crossroad at location location at time time.

- Each vehicle has a private key *sk* and a certificate *cert* on it.
- A vehicle broadcasts his pseudonym $nym \leftarrow (H(\text{location}) \cdot H(\text{time}))^{sk} \text{privacy}.$
 - It is infeasible to link the pseudonyms with a particular user.
- A vehicle signs the location, time and additional data accountability.

The signature proofs that:

- the signer knowns the secret key unforgeability
- the secret key has a valid certificate seclusiveness

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik

Kamil Klucznia Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution Concept

Construction

Conclusion:

Example

Sort the pseudonyms lexicographically and hash: $seed \leftarrow H(nym_0||nym_1||..nym_{n-1}||location||time).$

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik,

Kamil Kluczni Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution Concept

Construction

Conclusion

Example

- Sort the pseudonyms lexicographically and hash: $seed \leftarrow H(nym_0||nym_1||...nym_{n-1}||location||time).$
- 2 For i = 0 to n: the $next \leftarrow i + seed \mod n$ goes first.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introductio Solution

Concept

Constituction

Conclusions

Example

- Sort the pseudonyms lexicographically and hash: $seed \leftarrow H(nym_0||nym_1||..nym_{n-1}||location||time).$
- **2** For i = 0 to n: the $next \leftarrow i + seed \mod n$ goes first.

Greedy Parties

The pseudonyms are deterministic - a user cannot derive a different pseudonym at a given time and location

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution Concept

Constituction

Conclusions

Example

- Sort the pseudonyms lexicographically and hash: $seed \leftarrow H(nym_0||nym_1||...nym_{n-1}||location||time).$
- **2** For i = 0 to n: the $next \leftarrow i + seed \mod n$ goes first.

Greedy Parties

The pseudonyms are deterministic - a user cannot derive a different pseudonym at a given time and location - he would break seclusiveness or unforgeability.

Local Self -Organization with Strong Privacy Protection

Solution Concept

Example

- Sort the pseudonyms lexicographically and hash: $seed \leftarrow H(nym_0||nym_1||..nym_{n-1}||location||time).$
- For i = 0 to n: the next $\leftarrow i + seed \mod n$ goes first.

Greedy Parties

The pseudonyms are deterministic - a user cannot derive a different pseudonym at a given time and location - he would break seclusiveness or unforgeability.

Unlinkability of pseudonyms - Decisional Diffie-Hellman

$$(H(\text{location}-1) \cdot H(\text{time}))^{sk} = (h_1 \cdot H(\text{time}))^{sk} \text{ and } (H(\text{location}-2) \cdot H(\text{time}))^{sk} = (h_2 \cdot H(\text{time}))^{sk}$$

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution Concept

Construction

Conclusion

Deanonymization/Opening

■ The signature contains also an encryption of the users identity: $ID \leftarrow \hat{h}^{sk}$.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution Concept

Construction

Conclusion

Deanonymization/Opening

- The signature contains also an encryption of the users identity: $ID \leftarrow \hat{h}^{sk}$.
- An Opening Authority can decrypt the identity of a misbehaving vehicle.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution Concept

Construction

Conclusions

Deanonymization/Opening

- The signature contains also an encryption of the users identity: $ID \leftarrow \hat{h}^{sk}$.
- An Opening Authority can decrypt the identity of a misbehaving vehicle.

Tracing - Protection Against Cloning

The signature contains another encryption of a "partial identity" $ID_D \leftarrow H(\text{time})^{sk}$.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution Concept

Construction

Conclusions

Deanonymization/Opening

- The signature contains also an encryption of the users identity: $ID \leftarrow \hat{h}^{sk}$.
- An Opening Authority can decrypt the identity of a misbehaving vehicle.

Tracing - Protection Against Cloning

The signature contains another encryption of a "partial identity" $ID_p \leftarrow H(\texttt{time})^{sk}$.

■ The <u>Tracing Authority</u> can decrypt ID_p from a signature.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction Solution

Concept

Ooristi dellori

Deanonymization/Opening

- The signature contains also an encryption of the users identity: $ID \leftarrow \hat{h}^{sk}$.
- An Opening Authority can decrypt the identity of a misbehaving vehicle.

Tracing - Protection Against Cloning

The signature contains another encryption of a "partial identity" $ID_p \leftarrow H(\texttt{time})^{sk}$.

- The <u>Tracing Authority</u> can decrypt ID_p from a signature.
- The <u>Tracing Authority</u> will know if a vehicle appears in different locations at the same time.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Solution

Construction

Conclusion

Setup(1 $^{\lambda}$): Generate bilinear groups $BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e)$, where q is the group order and $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a type-3 pairing.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Concept

Construction

Setup(1 $^{\lambda}$): Generate bilinear groups $BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e)$, where q is the group order and $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a type-3 pairing.

■ KeyGen(*BG*): Choose $\tilde{g} \leftarrow \mathbb{G}_2$ and $(x, y) \leftarrow \mathbb{Z}_q$ at random.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

.

Construction

Conclusion

- Setup(1 $^{\lambda}$): Generate bilinear groups $BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e)$, where q is the group order and $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a type-3 pairing.
- KeyGen(BG): Choose $\tilde{g} \leftarrow \mathbb{G}_2$ and $(x, y) \leftarrow \mathbb{Z}_q$ at random.

Set the private key as $sk \leftarrow (x, y)$ and the public key $pk \leftarrow (\tilde{g}, \tilde{X}, \tilde{Y}) = (\tilde{g}, \tilde{g}^x, \tilde{g}^y)$

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introductio

Construction

Canalusians

- Setup(1 $^{\lambda}$): Generate bilinear groups $BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e)$, where q is the group order and $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a type-3 pairing.
- KeyGen(BG): Choose $\tilde{g} \leftarrow \mathbb{G}_2$ and $(x, y) \leftarrow \mathbb{Z}_q$ at random.

Set the private key as $sk \leftarrow (x, y)$ and the public key $pk \leftarrow (\tilde{g}, \tilde{X}, \tilde{Y}) = (\tilde{g}, \tilde{g}^x, \tilde{g}^y)$

■ Sign(pk, sk, M): $A \leftarrow \mathbb{G}_1$ and compute $B \leftarrow A^{x+y \cdot M}$ Output the signature $\sigma \leftarrow (A, B)$.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Construction

Setup(1 $^{\lambda}$): Generate bilinear groups $BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e)$, where q is the group order and $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a type-3 pairing.

■ KeyGen(*BG*): Choose $\tilde{g} \leftarrow \mathbb{G}_2$ and $(x, y) \leftarrow \mathbb{Z}_q$ at random.

Set the private key as $sk \leftarrow (x, y)$ and the public key $pk \leftarrow (\tilde{g}, \tilde{X}, \tilde{Y}) = (\tilde{g}, \tilde{g}^x, \tilde{g}^y)$

- Sign(pk, sk, M): $A \leftarrow \mathbb{G}_1$ and compute $B \leftarrow A^{x+y\cdot M}$. Output the signature $\sigma \leftarrow (A, B)$.
- Verify(pk, σ , M): Check that $e(A, \tilde{X} \cdot \tilde{Y}^m) = e(B, \tilde{g})$.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introductio

Solution

Construction

Conclusion

We use so called Signatures of Knowledge. Example:

$$SoK\{(\alpha,\beta): X=g^{\alpha} \wedge Y=g^{\beta} \cdot h^{\alpha}\}(M)$$

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Kluczni</u> Mirosław Kutyłowski, Shlomi Dolev

Introductio

ii iti oddotioi

Construction

Conclusion

We use so called Signatures of Knowledge. Example:

$$SoK\{(\alpha, \beta): X = g^{\alpha} \wedge Y = g^{\beta} \cdot h^{\alpha}\}(M)$$

Schnorr signature

Public key $X \in \mathbb{G}$ and secret key $\mathbf{x} \in \mathbb{Z}_q$ st. $X = g^{\mathbf{x}}$.

$$Sok\{(\alpha): X=g^{\alpha}\}(M)$$

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Kluczni</u> Mirosław Kutyłowski, Shlomi Dolev

Introductio

Construction

Conclusions

We use so called Signatures of Knowledge. Example:

$$SoK\{(\alpha, \beta): X = g^{\alpha} \wedge Y = g^{\beta} \cdot h^{\alpha}\}(M)$$

Schnorr signature

Public key $X \in \mathbb{G}$ and secret key $\mathbf{x} \in \mathbb{Z}_q$ st. $X = g^{\mathbf{x}}$.

$$Sok\{(\alpha): X=g^{\alpha}\}(M)$$

■ Sign: Choose $t \leftarrow \mathbb{Z}_q$, compute $T \leftarrow g^t$, compute $c \leftarrow H(T||M)$, compute $s \leftarrow t + c \cdot x$. The signature on is (c, s).

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Kluczni</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Construction

Conclusions

We use so called Signatures of Knowledge. Example:

$$SoK\{(\alpha, \beta): X = g^{\alpha} \wedge Y = g^{\beta} \cdot h^{\alpha}\}(M)$$

Schnorr signature

Public key $X \in \mathbb{G}$ and secret key $X \in \mathbb{Z}_q$ st. $X = g^X$.

$$Sok\{(\alpha): X = g^{\alpha}\}(M)$$

- Sign: Choose $t \leftarrow \mathbb{Z}_q$, compute $T \leftarrow g^t$, compute $c \leftarrow H(T||M)$, compute $s \leftarrow t + c \cdot x$. The signature on is (c, s).
- Verify: Compute $\tilde{T} \leftarrow g^s \cdot X^{-c}$, check whether $c = H(\tilde{T}||M)$

Putting Things Together

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Concept

Construction

Conclusions

1 Run $BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e) \leftarrow \mathsf{Setup}_{RS}$,

¹For example Cramer-Shoup or ElGamal cryptosystem

Putting Things Together

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, Kamil Klucznia Mirosław Kutyłowski, Shlomi Doley

Introduction

Concept

Construction

Conclusions

Setup

- 1 Run $BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e) \leftarrow \mathsf{Setup}_{RS}$,
- 2 Choose $\hat{h} \leftarrow \mathbb{G}_1$.

¹For example Cramer-Shoup or ElGamal cryptosystem

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław

Introduction

. . . .

Construction

Conclusion

Setup

- 1 Run $BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e) \leftarrow \mathsf{Setup}_{RS}$,
- 2 Choose $\hat{h} \leftarrow \mathbb{G}_1$.
- $(sk_{RS},pk_{RS})=((x,y),(\tilde{g},\tilde{X},\tilde{Y}))\leftarrow \mathsf{KeyGen}_{RS}(BG).$

¹For example Cramer-Shoup or ElGamal cryptosystem

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, amil Klucz

Kamil Klucznia Mirosław Kutyłowski, Shlomi Dolev

Introduction

Construction

Conclusion:

Setup

- 1 Run $BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e) \leftarrow \mathsf{Setup}_{RS}$,
- 2 Choose $\hat{h} \leftarrow \mathbb{G}_1$.
- $(sk_{RS}, pk_{RS}) = ((x, y), (\tilde{g}, \tilde{X}, \tilde{Y})) \leftarrow \text{KeyGen}_{RS}(BG).$
- $(sk_{CS}^{trace}, pk_{CS}^{trace}) \leftarrow \text{KeyGen}_{Enc}(BG)^{1}.$

¹For example Cramer-Shoup or ElGamal cryptosystem

Local Self -Organization with Strong Privacy Protection

Construction

Setup

Run $BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e) \leftarrow \text{Setup}_{BS}$

2 Choose $\hat{h} \leftarrow \mathbb{G}_1$.

 $(sk_{BS}, pk_{BS}) = ((x, y), (\tilde{g}, \tilde{X}, \tilde{Y})) \leftarrow \text{KeyGen}_{BS}(BG).$

 $(sk_{CS}^{trace}, pk_{CS}^{trace}) \leftarrow \text{KeyGen}_{Fnc}(BG)^{1}.$

 $(sk_{CS}^{open}, pk_{CS}^{open}) \leftarrow \text{KeyGen}_{Enc}(BG)^{1}.$

Issue:

■ The user obtains $usk = (u, \sigma) = (u, (\sigma_1, \sigma_1^{x+y \cdot u})).$

¹For example Cramer-Shoup or ElGamal cryptosystem

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik Kamil Kluc:

Kamil Kluczni Mirosław Kutyłowski, Shlomi Dolev

Introduction

Titi oddotioi

Construction

Conclusions

Setup

1 Run
$$BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e) \leftarrow Setup_{RS}$$
,

- 2 Choose $\hat{h} \leftarrow \mathbb{G}_1$.
- $(sk_{RS}, pk_{RS}) = ((x, y), (\tilde{g}, \tilde{X}, \tilde{Y})) \leftarrow \text{KeyGen}_{RS}(BG).$
- $(sk_{CS}^{trace}, pk_{CS}^{trace}) \leftarrow \text{KeyGen}_{Enc}(BG)^{1}.$
- $(sk_{CS}^{open}, pk_{CS}^{open}) \leftarrow \text{KeyGen}_{Enc}(BG)^{1}.$
- Issue:
 - The user obtains $usk = (u, \sigma) = (u, (\sigma_1, \sigma_1^{x+y \cdot u})).$
 - The issuer obtains $ID = \hat{h}^u$.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

iiiti oddotioi

Construction

Conclusions

Setup

■ Run
$$BG = (q, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e) \leftarrow Setup_{RS}$$
,

- 2 Choose $\hat{h} \leftarrow \mathbb{G}_1$.
- $(sk_{RS}, pk_{RS}) = ((x, y), (\tilde{g}, \tilde{X}, \tilde{Y})) \leftarrow \text{KeyGen}_{RS}(BG).$
- $(sk_{CS}^{trace}, pk_{CS}^{trace}) \leftarrow \text{KeyGen}_{Enc}(BG)^{1}.$
- $(sk_{CS}^{open}, pk_{CS}^{open}) \leftarrow \text{KeyGen}_{Enc}(BG)^1.$
- Issue:
 - The user obtains $usk = (u, \sigma) = (u, (\sigma_1, \sigma_1^{x+y \cdot u})).$
 - The issuer obtains $ID = \hat{h}^u$.

The issue protocol does not reveal u, to the Issuer.

¹For example Cramer-Shoup or ElGamal cryptosystem

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski,

Introductio

Solution

Construction

$$usk = (u, \sigma) = (u, (\sigma_1, \sigma_1^{x+y \cdot u}))$$

- NymGen(usk, location, time)):
 - output $nym \leftarrow (H_1(\text{location}) \cdot H_2(\text{time}))^{u}$.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław

Kamil Kluczni Mirosław Kutyłowski, Shlomi Dolev

Introduction

Calutian

Construction

$$usk = (u, \sigma) = (u, (\sigma_1, \sigma_1^{x+y \cdot u}))$$

- NymGen(usk, location, time)):
 - 1 output $nym \leftarrow (H_1(\text{location}) \cdot H_2(\text{time}))^u$.
- Sign(*usk*, *nym*, *M*):
 - 11 $C_1 \leftarrow \text{Enc}_{CS}(pk_{cs}^{tsk}, \mathsf{H}(\texttt{time}||tracing})^u)$ and $C_2 \leftarrow \text{Enc}_{CS}(pk_{cs}^{osk}, \hat{h}^u).$

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski

Introduction

ii ili oduciioi

Construction

$$usk = (u, \sigma) = (u, (\sigma_1, \sigma_1^{x+y \cdot u}))$$

- NymGen(usk, location, time)):
 - output $nym \leftarrow (H_1(\text{location}) \cdot H_2(\text{time}))^u$.
- Sign(*usk*, *nym*, *M*):
 - 11 $C_1 \leftarrow \text{Enc}_{CS}(pk_{cs}^{tsk}, \mathsf{H}(\texttt{time}||tracing})^u)$ and $C_2 \leftarrow \text{Enc}_{CS}(pk_{cs}^{osk}, \hat{h}^u).$
 - Compute the following Signature of Knowledge:

$$\pi \leftarrow SoK\{(lpha,eta,\gamma): \ C_1 = \mathsf{Enc}_{CS}(pk_{cs}^{tsk},\mathsf{H}_2(\mathsf{time}||\mathit{tracing})^lpha) \land \ C_2 = \mathsf{Enc}_{CS}(pk_{cs}^{osk},\hat{h}^lpha) \land \ nym = (H_1(\mathsf{location}) \cdot H_2(\mathsf{time}))^lpha \land \ e(eta, ilde{X} \cdot ilde{Y}^lpha) = e(\gamma, ilde{q})\}(M)$$

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introduction

Construction

Constituction

$$usk = (u, \sigma) = (u, (\sigma_1, \sigma_1^{x+y \cdot u}))$$

- NymGen(usk, location, time)):
 - output $nym \leftarrow (H_1(\text{location}) \cdot H_2(\text{time}))^{u}$.
- Sign(usk, nym, M):
 - 11 $C_1 \leftarrow \text{Enc}_{CS}(pk_{cs}^{tsk}, \mathsf{H}(\texttt{time}||tracing})^u)$ and $C_2 \leftarrow \text{Enc}_{CS}(pk_{cs}^{osk}, \hat{h}^u)$.
 - 2 Compute the following Signature of Knowledge:

$$\pi \leftarrow SoK\{(lpha,eta,\gamma): \ C_1 = \mathsf{Enc}_{CS}(pk_{cs}^{tsk},\mathsf{H}_2(\mathsf{time}||\mathit{tracing})^lpha) \land \ C_2 = \mathsf{Enc}_{CS}(pk_{cs}^{osk},\hat{h}^lpha) \land \ nym = (H_1(\mathsf{location}) \cdot H_2(\mathsf{time}))^lpha \land \ e(eta, ilde{X} \cdot ilde{Y}^lpha) = e(\gamma, ilde{g})\}(M)$$

- Verify
 - 1 Verify the signature of knowledge π .

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, (amil Klucznia Mirosław Kutvłowski.

Introduction

Solution

Construction

Conclusion:

Tracing Given signatures (C_1, C_2, nym, π) and (C_1', C_2', nym', π') :

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introductio

...........

Construction

Conclusion:

Tracing

Given signatures (C_1, C_2, nym, π) and (C'_1, C'_2, nym', π') :

1 The tracer decrypts

 $\mathsf{H}(\mathsf{time}||\mathit{tracing})^{\mathsf{u}} \leftarrow \mathit{Dec}(\mathit{sk}^{\mathit{tsk}}_{\mathit{CS}}, \mathit{C}_1)$ and

 $\mathsf{H}(\mathsf{time}||\mathit{tracing})^{\mathit{u'}} \leftarrow \mathit{Dec}(\mathit{sk}^{\mathit{tsk}}_{\mathit{CS}},\mathit{C}'_1)$

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

ntroductio

.

Construction

Conclusions

Tracing

Given signatures (C_1, C_2, nym, π) and (C'_1, C'_2, nym', π') :

- The tracer decrypts $H(time||tracing)^u \leftarrow Dec(sk_{CS}^{tsk}, C_1)$ and $H(time||tracing)^{u'} \leftarrow Dec(sk_{CS}^{tsk}, C_1')$
- 2 Check whether $H(time||tracing)^{u} = H(time||tracing)^{u'}$.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

ntroductio

. . . .

Construction

Conclusions

Tracing

Given signatures (C_1, C_2, nym, π) and (C'_1, C'_2, nym', π') :

- The tracer decrypts $H(time||tracing)^u \leftarrow Dec(sk_{CS}^{tsk}, C_1)$ and $H(time||tracing)^{u'} \leftarrow Dec(sk_{CS}^{tsk}, C_1')$
- 2 Check whether $H(time||tracing)^{u} = H(time||tracing)^{u'}$.

Note that if time is different for both ciphertext the identifiers are unlinkable.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

ntroductio

Construction

Conclucione

Tracing

Given signatures (C_1, C_2, nym, π) and (C'_1, C'_2, nym', π') :

- The tracer decrypts $H(time||tracing)^u \leftarrow Dec(sk_{CS}^{tsk}, C_1)$ and $H(time||tracing)^{u'} \leftarrow Dec(sk_{CS}^{tsk}, C_1')$
- 2 Check whether $H(time||tracing)^{u} = H(time||tracing)^{u'}$.

Note that if time is different for both ciphertext the identifiers are unlinkable.

Opening

Given a signature (C_1 , C_2 , nym, π):

1 Decrypt the identity $ID = \hat{h}^u = Dec(sk_{CS}^{osk}, C_2)$

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski,

Introductio

Solution

Constructio

Conclusions

■ We introduced 2D-Traceable Domain Signatures

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Doley

Introduction

0 1 11

Constructio

- We introduced 2D-Traceable Domain Signatures
- It is a solution for VANET authentication:
 - Privacy
 - Accountability/Unforgeability
 - Seclusiveness
 - Clone detection

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introductio

Solution

Construction

- We introduced 2D-Traceable Domain Signatures
- It is a solution for VANET authentication:
 - Privacy
 - Accountability/Unforgeability
 - Seclusiveness
 - Clone detection
- Pseudonyms are deterministic and a user cannot change his pseudonym at will.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introductio

Capatrustian

- We introduced 2D-Traceable Domain Signatures
- It is a solution for VANET authentication:
 - Privacy
 - Accountability/Unforgeability
 - Seclusiveness
 - Clone detection
- Pseudonyms are deterministic and a user cannot change his pseudonym at will.
- Solution for Virtual Traffic Lights <u>honest majority is not</u> required.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introductio

Construction

- We introduced 2D-Traceable Domain Signatures
- It is a solution for VANET authentication:
 - Privacy
 - Accountability/Unforgeability
 - Seclusiveness
 - Clone detection
- Pseudonyms are deterministic and a user cannot change his pseudonym at will.
- Solution for Virtual Traffic Lights honest majority is not required.
- No need to build an expensive PKI infrastructure.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Klucznia</u> Mirosław Kutyłowski, Shlomi Dolev

Introductio

Complexion

- We introduced 2D-Traceable Domain Signatures
- It is a solution for VANET authentication:
 - Privacy
 - Accountability/Unforgeability
 - Seclusiveness
 - Clone detection
- Pseudonyms are deterministic and a user cannot change his pseudonym at will.
- Solution for Virtual Traffic Lights honest majority is not required.
- No need to build an expensive PKI infrastructure.
- A vehicle needs to store only single key to produce multiple pseudonyms.

Local Self
-Organization
with Strong
Privacy
Protection

Lucjan Hanzlik, <u>Kamil Kluczniak</u> Mirosław Kutyłowski, Shlomi Dolov

Introductio

Concept

Construction

Conclusions

Questions?