

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descripti Signatures Graph

Hierarchical Ring Signatures

Łukasz Krzywiecki, Mirosław Kutyłowski, <u>Anna Lauks-Dutka</u>

Institute of Mathematics and Computer Science Wrocław University of Technology

WEWoRC 2009 July 7-9, Graz University of Technology

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

Outline

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptio Signatures Graph

1 Ring Signatures

- Concept
- Problem
- 2 Hierarchical Ring Signatures
 - Idea
 - Building Blocks
 - Scheme Description

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q ()

Signatures Graph

Outline

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures

Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descript Signatures Graph

1 Ring Signatures

- Concept
- Problem

| Hierarchical Ring Signatures

- Idea
- Building Blocks
- Scheme Description
- Signatures Graph

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptic Signatures Graph **Ring signature** = digital signature used to sign a document in anonymous way

Basic Properties

Signer uses his private key and public keys of some arbitrary group of people

Identity of the signer is hidden within this group (called a ring)

・ロット (雪) (日) (日) (日)

one cannot prevent being involved into a ring

[1] R.L. Rivest, A. Shamir, Y. Tauman: "How to Leak a Secret"

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptio Signatures Graph **Ring signature** = digital signature used to sign a document in anonymous way

Basic Properties

- Signer uses his private key and public keys of some arbitrary group of people
- Identity of the signer is hidden within this group (called a ring)

3 One cannot prevent being involved into a ring

[1] R.L. Rivest, A. Shamir, Y. Tauman: "How to Leak a Secret"

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptic Signatures Graph **Ring signature** = digital signature used to sign a document in anonymous way

Basic Properties

- Signer uses his private key and public keys of some arbitrary group of people
- Identity of the signer is hidden within this group (called a ring)

3 One cannot prevent being involved into a ring

[1] R.L. Rivest, A. Shamir, Y. Tauman: "How to Leak a Secret"

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptic Signatures Graph **Ring signature** = digital signature used to sign a document in anonymous way

Basic Properties

- Signer uses his private key and public keys of some arbitrary group of people
- Identity of the signer is hidden within this group (called a ring)

3 One cannot prevent being involved into a ring

[1] R.L. Rivest, A. Shamir, Y. Tauman: "How to Leak a Secret"

イロト イポト イヨト イヨト ヨー のくぐ

The Drawback of Ring Signatures

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures ^{Concept} Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descripti Signatures Graph

The public keys of **all** ring members are necessary for verification

onsequences

the signature size is proportional to the ring size

・ロット (雪) (日) (日) (日)

higher anonymity level = longer signatures

The Drawback of Ring Signatures

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures ^{Concept} Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descripti Signatures Graph The public keys of **all** ring members are necessary for verification

Consequences

the signature size is proportional to the ring size

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

higher anonymity level = longer signatures

Previous Solution

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures ^{Concept} Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptic Signatures Graph

Observations from [2]

 in practical situations ring does not change for a long period of time

rings can have implicit short descriptions e.g.:

"the ring of public keys of all members of the President's Cabinet"

The signature size **does not** have to be linear in the size of the ring

イロト イポト イヨト イヨト ヨー のくぐ

[2] Y. Dodis, A. Kiayias, A. Nicolosi, V. Shoup: "Anonymous Identification in Ad-hoc Groups"

Previous Solution

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures ^{Concept} Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descripti Signatures Graph

Signature Scheme from [2]

- based on one-way accumulators
- uses group secret and public keys
- produces constant-size ring rignature

[2] Y. Dodis, A. Kiayias, A. Nicolosi, V. Shoup: "Anonymous Identification in Ad-hoc Groups"

Outline

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures

Idea Building Blocks Scheme Description Signatures Graph

Ring Signatures

- Concept
- Problem

2 Hierarchical Ring Signatures

- Idea
- Building Blocks
- Scheme Description

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q ()

Signatures Graph

The Core Idea of Proposed Solution

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures ^{Concept} Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptic Signatures Granb

Hierarchical Ring Signatures

- Reuse the information about the previously created rings to get shorter signatures
- Form a hierarchical structure signatures created on a particular level utilizes anonymity sets from lower levels

・ロット (雪) (日) (日) (日)

Anonymity set grows exponentially with the level number

The Core Idea of Proposed Solution

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptic Signatures Granh

Hierarchical Ring Signatures

- Reuse the information about the previously created rings to get shorter signatures
- Form a hierarchical structure signatures created on a particular level utilizes anonymity sets from lower levels

▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ■ ● ● ● ●

Anonymity set grows exponentially with the level number

Building Blocks of The Construction

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures ^{Concept} Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptio Signatures Graph Non-Interactive Zero Knowledge Proof of knowledge and equality 1 out of *n* discrete logarithms

Given $(y_1, g_1), \dots, (y_n, g_n)$ and (y, g) prove that $\log_g y = \log_{g_i} y_i$ for some unrevealed *i* Notation: NIZKP $(g, y, \{(g_1, y_1), \dots, (g_n, y_n)\})$

Standard Digital Signature Scheme

SIG(g^x , M) - signature of the message M. Assumption: scheme with secret and public keys in the form of (x, g^x)

Hash function

 $\mathcal{H}: \{\mathbf{0},\mathbf{1}\}^* \to \langle \boldsymbol{g}
angle$

Building Blocks of The Construction

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Description Signatures Graph Non-Interactive Zero Knowledge Proof of knowledge and equality 1 out of *n* discrete logarithms

Given $(y_1, g_1), \dots, (y_n, g_n)$ and (y, g) prove that $\log_g y = \log_{g_i} y_i$ for some unrevealed *i* Notation: NIZKP $(g, y, \{(g_1, y_1), \dots, (g_n, y_n)\})$

Standard Digital Signature Scheme

 $SIG(g^x, M)$ - signature of the message M.

Assumption: scheme with secret and public keys in the form of (x, g^x)

Hash function

 $\mathcal{H}: \{\mathbf{0},\mathbf{1}\}^*
ightarrow \langle oldsymbol{g}
angle$

Building Blocks of The Construction

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptio Signatures Graph Non-Interactive Zero Knowledge Proof of knowledge and equality 1 out of *n* discrete logarithms

Given $(y_1, g_1), \dots, (y_n, g_n)$ and (y, g) prove that $\log_g y = \log_{g_i} y_i$ for some unrevealed *i* Notation: NIZKP $(g, y, \{(g_1, y_1), \dots, (g_n, y_n)\})$

Standard Digital Signature Scheme

 $SIG(g^x, M)$ - signature of the message *M*.

Assumption: scheme with secret and public keys in the form of (x, g^x)

Hash function

 $\mathcal{H}: \{0,1\}^* \to \langle \textbf{\textit{g}} \rangle$

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Description Signatures Graph

Assumptions

there is a PKI for registering public keys of the users

- $(x_u, y_u = g^{x_u})$ the private and public key of user u
- there is a bulletin board (BB) where all hierarchical signatures can be published

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Description Signatures Graph

Signature Creation at The Base Level

- $A = (y_1, y_2, ..., y_j, ..., y_n)$ ring
- *j* the signer
- **g**_A generator obtained from \mathcal{H}

 $SHRS_A := NIZKP(g_A, g_A^{x_j}, \{(g, y_1), \dots, (g, y_n)\}) ||$ $|| SIG(g_A^{x_j}, M_A)$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

Signature size at the base level is proportional to the cardinality of the ring

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Description Signatures Graph

Signature Creation at The Base Level

- $A = (y_1, y_2, ..., y_j, ..., y_n)$ ring
- *j* the signer
- **g**_A generator obtained from \mathcal{H}

 $SHRS_A := NIZKP(g_A, g_A^{x_j}, \{(g, y_1), \dots, (g, y_n)\}) ||$ $|| SIG(g_A^{x_j}, M_A)$

Signature size at the base level is proportional to the cardinality of the ring

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Description Signatures Graph

Signature Creation at The Next Levels

- **g**_C generator obtained from \mathcal{H}
- SHRS_A hierarchical ring signature created by j
- **SHRS**_B hierarchical ring signature created by $i \neq j$

Signature size at the next levels is **much lower** then the cardinality of the ring!

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Description Signatures Graph

Signature Creation at The Next Levels

- **g**_C generator obtained from \mathcal{H}
- SHRS_A hierarchical ring signature created by j
- **SHRS**_B hierarchical ring signature created by $i \neq j$

Signature size at the next levels is **much lower** then the cardinality of the ring!

Creating New Signatures Anonymity Sets at The Base Level

Hierarchical Ring Signatures						
Anna Lauks-Dutka						
Ring Signatures ^{Concept} Problem						
Hierarchical Ring Signatures Idea Building Blocks Scheme Description Signatures Graph						
	A	В	С	D	Ε	F
				< □	→ ▲□→ ▲ ■→ ▲	≣) ≣ <i>•</i> 0

Creating New Signatures Anonymity Sets at The Second Level

イロト 不得 トイヨト イヨト ニヨー

Creating New Signatures Anonymity Sets at The Third Level

Creating New Signatures Anonymity Sets at The Next Levels

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べで

Signature Verification

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures ^{Concept} Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptio Signatures Graph 1 check if $SIG(g_C^{x_j}, M_C)$ verifies correctly with the verification key $g_C^{x_j}$

2 check NIZKP $(g_C, g_C^{x_j}, \{(g_A, g_A^{x_j}), (g_B, g_B^{x_i}\}))$

OK

Phases

M_C was signed by a user whose private key is hidden in the exponent of g^{X_j}_C

the exponent hidden in g^{x_i} is equal to one of the exponents hidden in the elements of the ring A or B

Signature Verification

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures ^{Concept} Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptic Signatures Graph 1 check if $SIG(g_C^{x_j}, M_C)$ verifies correctly with the verification key $g_C^{x_j}$

2 check NIZKP $(g_C, g_C^{x_j}, \{(g_A, g_A^{x_j}), (g_B, g_B^{x_i}\}))$

if OK

Phases

- M_C was signed by a user whose private key is hidden in the exponent of g^{x_j}_C
- the exponent hidden in g^x_c is equal to one of the exponents hidden in the elements of the ring A or B

Hierarchical Ring Signatures

Anna Lauks-Dutka

Ring Signatures Concept Problem

Hierarchical Ring Signatures Idea Building Blocks Scheme Descriptic Signatures Graph

Thank you for your attention!

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖▶ ■ のへで