

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Model

predistribution

Redistributio

Analysis

From Key Predistribution to Key Redistribution

Jacek Cichoń, Zbigniew Gołębiewski, Mirosław Kutyłowski

Wrocław University of Technology FRONTS, 7th Framework Programme, contract 215270

ALGOSENSORS 2010, Bordeaux, 5.07.2010

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Model

Key predistribution

.

Analysis

Devices

- weak computationally
- no asymmetric cryptography

Communication

- wireless
- no advance knowledge of network architecture
- mobility
- nodes join and leave the network

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Model

Key

.

Scenarios

- sensors fields
- mobile artefacts

Sensor field

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Model

Key

.

Analysis

Scenarios

- sensors fields
- mobile artefacts

Sensor field

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Model

predistributio

. .

Analysis

Scenarios

- sensors fields
- mobile artefacts

Sensor field

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Model

Key

.

Scenarios

- sensors fields
- mobile artefacts

Sensor field

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Model

Key

Analysis

Scenarios

- sensors fields
- mobile artefacts

. ...

Data protection for tiny artefacts

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Model

Key

p. od.ou.ou.

.

Data

- sensitive measurement information
- safety critical data
- **...**

Data protection for tiny artefacts

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Model

Key predistribution

D. distable at

Analysis

Data

- sensitive measurement information
- safety critical data
 - **...**

Adversary

- capturing data
- impersonation
- intercepting nodes

Data protection for tiny artefacts

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Model

predistribution

Redistribution

Analysis

Data

- sensitive measurement information
- safety critical data
 - **...**

Adversary

- capturing data
- impersonation
- intercepting nodes

Possibilities:

- eavesdropping communication
- reverse engineering some devices
- cloning devices

Security requirements

Key Redistribution

Cichoń, Gołebiewsk Kutyłowski

Model

predistributior

Podietributio

Analysis

Requirements

- communication encrypted (confidentiality)
- data integrity (data not manipulated when transmitted)
- authentication of nodes (impersonation impossible)

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Mode

Key predistribution

predistributio

i tealsti ibatic

- \blacksquare the system provider generates a large pool of n keys
- each device receives a subset of keys of cardinality k

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Mode

Key predistribution

prodictibatio

Analysis

- \blacksquare the system provider generates a large pool of n keys
- each device receives a subset of keys of cardinality k

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Mode

Key predistribution

p. 0 a. 0 a. 0

Analysis

- \blacksquare the system provider generates a large pool of n keys
- each device receives a subset of keys of cardinality k

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Mode

Key predistribution

Desile

A -- - b -- b-

- \blacksquare the system provider generates a large pool of n keys
- each device receives a subset of keys of cardinality k

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

Key predistribution

D - - It - Author At -

Redistribut

Capturing keys

- an adversary can reverse engineer some devices

keys captured by the adversary

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

Key predistribution

De eli etvile utio

Capturing keys

- an adversary can reverse engineer some devices

keys captured by the adversary

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

Key predistribution

predistributio

Redistribution

Analysis

Capturing keys

- an adversary can reverse engineer some devices
- no more protection with the captured keys

keys captured by the adversary

Key Redistribution

Cichoń, Gołebiewski, Kutyłowski

Model

Key predistribution

Redistribution

Analysis

Known countermeasures

q-composite at least *q* shared keys are necessary for establishing a secure link,

- each device has to hold more keys
- therefore collecting keys by the adversary more efficient

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Model Kev

predistribution

Redistributi

Analysis

Known countermeasures

q-composite at least *q* shared keys are necessary for establishing a secure link,

- each device has to hold more keys
- therefore collecting keys by the adversary more efficient

multipath devices A and B establish a session key from keys transported over the links: A- C_1 -B, A- C_2 -B, ..., A- C_q -B

■ high density of devices necessary

Kev Redistribution

Kev

predistribution

Known countermeasures

q-composite at least q shared keys are necessary for establishing a secure link,

- each device has to hold more keys
- therefore collecting keys by the adversary more efficient

multipath devices A and B establish a session key from keys transported over the links: $A-C_1-B_1$ $A-C_2-B, ..., A-C_a-B$

high density of devices necessary

version cannot decrypt communication

key levels each key has many versions computed with a hash chain, an adversary holding wrong

it increases the cost of attack, but only by

50%

Key redistribution scheme

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

predistribution

Redistribution

Analysis

General framework

- predistribution keys used only for encryption of temporal keys
- temporal keys used for communication between devices
- new temporal keys broadcasted periodically, every key from the pool used to encrypt one temporal key

Key redistribution scheme

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Model

predistribution

Redistribution

Analysis

General framework

- predistribution keys used only for encryption of temporal keys
- temporal keys used for communication between devices
- new temporal keys broadcasted periodically, every key from the pool used to encrypt one temporal key

Man trick

each temporal key encrypted by *m* randomly chosen predistribution keys

Key Redistribution

Redistribution

predistribution keys used to encrypt temporal key

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

Key

Redistribution

Analysis

an assigment of all temporal keys to predistribution keys

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

Key

Redistribution

Analysis

Temporal keys received by device A

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

y . oli o kuilo . . ki o ..

p. od.ou.bau.

Redistribution

Analysis

Temporal keys received by devices A and B

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

Key

Redistribution

Analysis

Temporal keys received by devices A and B

Key Redistribution

Cichon, Gołebiewski Kutyłowski

Mode

Key

ļ-.--.

Redistribution

Analysis

Temporal keys received by devices A and B for another session

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Model

predistribution

Redistribution

Analysis

Summary

- devices A and B may share a temporal key K'_i because:
 - \blacksquare K'_i was broadcasted as $E_{K_u}(K'_i)$ and A knows K_u
 - K'_i was broadcasted as $E_{K_v}(K'_i)$ and B knows K_v

while A does not know K_v and B does not know K_u .

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

Key prodictribution

Redistribution

Analysis

Summary

- devices A and B may share a temporal key K'_i because:
 - \blacksquare K'_i was broadcasted as $E_{K_u}(K'_i)$ and A knows K_u
 - K'_i was broadcasted as $E_{K_v}(K'_i)$ and B knows K_v

while A does not know K_v and B does not know K_u .

after broadcasting new temporal keys K_u and K_v does not help to share a key, since this time they encrypt different keys, say

$$E_{K_{\nu}}(K_{r}^{\prime\prime}), \quad E_{K_{\nu}}(K_{z}^{\prime\prime})$$

Key redistribution scheme properties

Key Redistribution

Cichoń, Gołebiewsk Kutyłowski

Model

predistribution

Redistribution

Analysis

while A talking with B:

- after redistribution of temporal keys they share different keys
- an adversary impersonating B has to hold appropriate predistribution keys possessed by B

It does not suffice to hold some key of B in order to impersonate B or eavesdrop the whole communication of B. Now it is necessary to hold all or most keys of B!

Analytic results

Key Redistribution

Cichoń, Gołebiewsk Kutyłowski

...

predistribution

Dodiotributio

Analysis

Method used

combinatorial classes ...

Results

exact values for the expected number of shared:

- predistribution keys
- temporal keys

Analytic results

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

predistributio

Redistribution

Analysis

Expected number of shared temporal keys χ

Suppose that each predistribution key is broadcasted m times, and each device holds $k=\Theta(\sqrt{n})$ out of n predistribution keys. Then

$$E(\widetilde{\chi}) = \frac{m}{n}k^2 + O\left(\frac{1}{\sqrt{n}}\right) .$$

Precise values for any n, m, k are given in the paper

Corollary

so for m = 2 devices A and B should have 2 shared temporal keys!

From a random pair of predistribution keys!

Analytic results

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Mode

Key

Podictributio

Analysis

Rysunek: The expected number of temporal keys shared by A and B for $n=2^{16}$, $2^6 \le k \le 2^9$ and m=1 (black plot), m=2 (blue plot), m=4 (pink plot), m=8 (red plot), m=16 (green plot) (dashed plots present approximations from the previous slide).

Attack cost

Key Redistribution

Cichoń, Gołebiewski Kutyłowski

Model

predistributio

De distante di

Analysis

Let n be the pool size, k number of keys for each device, m = number of copies of each temporal key.

Let $T_{A,B}$ be a set of temporal keys shared by the devices A and B. Let Ad denote the set of the temporal keys held by an adversary.

Then

If
$$|Ad| = \sqrt{n}$$
, then $\Pr[T_{A,B} \subseteq Ad] \le (\frac{m}{\sqrt{n}})^m$.

If
$$|Ad| < \frac{n}{m2^{1/m}} \approx \frac{n}{m}(1 - \frac{\ln 2}{m})$$
, then $\Pr[T_{A,B} \subseteq Ad] < \frac{1}{2}$.

Conclusions

Key Redistribution

Gołebiewsk Kutyłowski

Mode

Key

predistributi

Analysis

surprising advance that make predistribution effective and reliable without a substantial cost

Key Redistribution

Gołebiewski Kutyłowski

Model

predistribution

Redistributio

Analysis

Thanks for your attention!

Contact data

- 1 Miroslaw.Kutylowski@pwr.wroc.pl
- 2 http://kutylowski.im.pwr.wroc.pl
- 3 +48 71 3202109, fax: +48 71 320 2105