Multiparty Finite Computations

T. Jurdziński (Wrocław University)

M. Kutyłowski (Wrocław University)

K. Loryś (Wrocław University)

some results in cooperation

with P. Ďuriš (Comenius University, Bratislava)

Multihead Finite Automata: cooperation

- each automaton may send a message after each step
- symbol currently seen and messages sent by the other automata transition function of a single automaton depends on the input

$$(q'_i, r) = \delta(q_i, a, m_1, \dots, m_{i-1}, m_{i+1}, \dots, m_k)$$

step. where m_j is the message sent by the jth automaton after previous

Multiprocessor Finite Automata: common master

- Each processor is a **genuine** finite automaton, it does not receive any messages
- and determines which processors are frozen and active: The master: after each step inspects the states of all processors

$$h(i, q_1, ..., q_k) \in \{ACTIVE, FROZEN\}$$

processors where *i* is the processor number and $q_1, ..., q_k$ – the states of all

Classical problems

Sensing sensing vs *non-sensing* heads (Duris, Galil – 1995)

Pattern matching by one-way, deterministic sensing automata (Jiang, Li - 1993)

pattern text

Hardware the number of automata vs computational power (Yao, Rivest – 1976; Monien – 1980)

New problems

Means of cooperation:

Cooperation means vs computational power.

Computational power of multiprocessor vs multihead systems

Communication:

Communication volume vs computational power

Message complexity classes

 $MESSAGE_l(k(n))$

length n where at most k(n) messages are sent for every input word of the languages that may be recognized by systems of l automata

 $MESSAGE(k) = \bigcup_{l} MESSAGE_{l}(k)$

Motivations

1. "Communication" Complexity

- Does the weaker mode of communication between devices decrease their computational power?
- How the limitation of communication size influence the power of devices?
- Communication complexity of problems in the case, when other resources are bounded.
- 2. Computation on sequential devices vs computation on devices transposition) with random access to memory (example: complexity of matrix

Obvious properties

- 1. *k* heads are at least as powerful as *k* processors (coordinated by a master)
- 2. $\{a^nb^n : n \in \mathbb{N}\}\$ can be recognized with 2 one-way processors, by 2 (not a regular language!) one-way heads with a single message,
- 3. $\{a^nb^nc^n:n\in\mathbb{N}\}$ can be recognized by 2 one-way heads (not a context free language!)
- 4. $\bigcup_{k=1}^{\infty} 2-Y\mathbf{H}(k) = Y\mathbf{LOGSPACE}$ for $Y \in \{\mathbf{N}, \mathbf{D}\}$

Results: Heads vs Processors

l. Simulations

- X-NH(k) = X-NP(k) for every $k \in \mathbb{N}$ and $X \in \{1, 2\}$
- X-**DH** $(k) \subseteq X$ -**DP**(k+2) for every $k \in \mathbb{N}$ and $X \in \{1,2\}$

2. Separation

• 1-DP(2) \subseteq 1-DH(2)

3. Closure properties

- $\bigcup_{k=1}^{\infty} 2\text{-NP}(k)$ and $\bigcup_{k=1}^{\infty} 2\text{-DP}(k)$ are closed under complement
- $\bigcup_{k=1}^{\infty}$ 1-NP(k) is **not** closed under complement
- 1-**DP**(k) is closed under complement for every k > 2

Results: Size of Communication

- 1. The hierarchy for the communication of constant size:
- (a) $MESSAGE(k-1) \subseteq MESSAGE(k)$ for one-to-one model
- (b) $MESSAGE(k-1) \subseteq MESSAGE(k+l-1)$ for on-bus model
- 2. probably a gap between MESSAGE(O(1)) and $MESSAGE(\Theta(\log n))$.
- 3. The languages which have the complexity of communication between log *n* and *n* form quite a dense hierarchy.
- 4. There are languages in $MESSAGE(\Theta(n))$.
- 5. Matrix multiplication requires $n^{3/2}/\log^{2+\epsilon} n$ messages. ching programs) (easy proof, also follows from two-party communication of bran-

Separation between heads and processors

Theorem For $|\Sigma| \ge 3$ the language

$$L_P = \{x \# y : x, y \in \Sigma^*, |x| = |y|, p(x, y) = 1\}$$

of the number of positions on which *x* and *y* differ. separates classes 1-**DP**(2) and 1-**DH**(2), where p(x,y) is the parity

How to recognize L_P by two-head one-way deterministic automaton:

- heads scan x and y simultaneously and synchronously
- one of the heads changes its states between ODD and EVEN on every position in which *x* and *y* differ

Separation: a sketch

Why two processors cannot recognize L_P (intuition):

- 1. Processors have to compare *x* and *y* simultaneously.
- 2. The only possibility to recognize current parity of the number of differences is to "desynchronize" processors on x and y
- 3. For appropriately constructed input words it is necessary to inof processors on *x* and *y* crease or decrease (monotonically) difference between positions
- The difference between positions of processors comparing appropriately constructed words *x* and *y* will grow too much contradicting 1.

Separation: details

The set of words *W* on which we cheat the automaton:

- $x_i = a_1$ or $x_i = a_2$ for every i
- $|a_1| = |a_2| = |b| = n$
- $p(a_1,b) \neq p(a_2,b) = 0$
- $K(a_i|b) \ge n c\log n$, $K(b|a_i) \ge n c\log n$
- both processors start and finish computation on every x_i and on bin the same state

Systems of finite automata which compute functions

- 1. The read-only tape includes the arguments of the function
- 2. The result of the function is written on one-way write-only tape with one head
- 3. Example: The representation of matrix multiplication problem: a sequence of columns (the second matrix) arguments are stored as a sequence of rows (the first matrix) and

Matrix multiplication problem

The lower bound for the matrix multiplication

messages for every $\varepsilon > 0$. **Theorem 1** The matrix multiplication function requires $\Omega(N^{3/2}/\log^{2+\epsilon}N)$

($O(N^{3/2})$ suffice by the straightforward algorithm.)

Sketch of the proof

- We consider matrices with large Kolmogorov complexity
- 2. We divide the computation on the stages. One stage consists of the part of computation in which s(n) bits of the result are written
- 3. The amount of communication in one stage is "almost" (n/s(n))when $s(n) = \omega(\log n)$

Matrix multiplication - one stage

Matrix multiplication - one stage

- During the stage we multiply the submatrix A by the vector B
- 2. Let B' be the longest subword of B on which no message was sent
- 3. Let A' be the submatrix of A corresponding to the block b'
- 4. A' has a big non-singular submatrix A_N , termined without knowledge of b' the product with an appropriate subvector b' of b is uniquely de-
- 5. we encode b' as one of the vectors giving this result while multiplied with A_N

Conclusions and open problems

Conclusion: multiprocessor automata have **similar** computational popowerful than processors wer to multihead automata, but in some cases heads are more

Conclusion: The amount of communication substantially influence the power of systems of finite automata

Problem: 1-**DP** $(k) \subsetneq 1$ -**DH**(k) for k > 2, 2-**DP** $(k) \subsetneq 2$ -**DH**(k) for k > 1

Problem: Are there any languages which require a non-constant, sublogarithmic number of messages?

Problem: a superlinear lower bound on the communication size for a decision problem.