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The modd -

shared read-only input string

finite memory devices (finite automata) reading the input

automata communicate by messages

the number of messages crucial, not the length of the com-
putation

a single step: each automaton behaves according to its tran-
sition function




Recognizing language Lo = {a"b" : n € N}







Recognizing language Ly = {12#12'#12°# .. #12 . k e N}

to check: each block is twice as long as the previous one
number of messages = number of blocks = O(logn)
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Double-logarithmic number of messages

Lo consists of words of the form
1l fey  #1'
where f1 =2, f>=3and
fi_q|(fi—1), fiol(fi—1), fi>1fori=3,...,k
e the number of blocks is O(loglogn) since f; > fi_1- fi_>

e checking relations between f; and fj_1 and fj_» requires
O(1) messages and two automata







M otivations

e communication complexity for shared data
(the classical approach: data divided between protocl par-
ticipants)

¢ limited memory for processing units
(finite memory is an oversimplification but most results can
be generalized)

e communication should be as small as possible
(communication channels, power consumption, ...)




M essage complexity classes

Language L belongs to MESSAGE(f(n)) if

there Is a system of finite automata that uses at most
f (n) messages on input x of length n and decides whether
XelL




Hierarchy qmmc:m-

Jurdzinski, Lorys and myself, COCOON’99:

e there Is a dense hierarchy of message complexity classes
between
loglogn and n

similar result for one-way automata for number of mes-
sages Q(logn)

e there Is a dense message complexity hierarchy of functions
above n

e for a constant number of messages: even one more message
counts!

10



... & Zatopianski, 2001

e asynchronous systems require significantly more messages
lower bounds that match performance of algorithms ob-
tained by step by step synchronization!
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Gap Qo_o_mB-

Is the assumption on message complexity

f(n) =Q(loglogn) and f(n) = Q(logn)

due to a weakness of proof techniques
or
this I1s not a concidence?

Remark: for the classical communication complexity there is
no gap theorem
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42m<< _uo@nc:m-

Theorem 1 For f(n)suchthat f(n) =w(1) and f(n)=o0(logn),
there is no one-way system which requires O( f(n)) messages.

Theorem 2 There is a constant c such that for f(n) = w(1) and
f(n) =o((logloglogn)®), there is no two-way system which re-
quires ©(f(n)) messages.
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Pr oof 5%:5:8-

1. establishing connection between behavior of systems of fi-
nite automata and systems of diophantine equations

2. minimal solutions for systems of diophantine equations =-
short inputs with a given number of messages
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jov\ mxmB_o_m-

% X3

ti K = time required by automaton k to read X;
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t11 +1t1 =1l1p, 1o >131, 141 =132+140.
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Description of computation - diophantine systems

ldea:

e Silent blocks with no communication and communication
positions

e a computation may find relations between lengths of silent
blocks

e Vvariables denoting time spent by automata on a given silent
block

(depending on the initila state)
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e computation = integer solution for these variables
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Technical Problems

Problems:

e behaviour of automaton inside a block depends on the block
contents. The speed may vary!!

e 0N two-way systems: a block may be scanned many times
before the second automaton decides to send a message
system recognizing language L»
= linear diophantine systems do not suffice to describe
computations
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e existance of integer solutions for systems of equations of

degree 2 is already undecidable!
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Graph characterization of one-way computation

nodes: states of automaton

edges: labelled by input symbols and time interval (how many
steps of automaton are required to move to the left one po-

sition)
computation within a silent block: a path through the graph

time to traverse a silent block: sum of time labels along the
path
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Remark: to be done simultaneously for all automata at the

same time
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Analysis of the pathson the graph

e the graph Is of a finite size,
e a path loops in a certain sense

e number of loops of each kind in a silent block determines
traversal time
= variables denoting the number of loops of each kind de-
scribe the block in a sufficient way
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... Itisnot that easy
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mo_c:o:-

e Induction on the number of nodes in the graph

e combining the descriptions of the subpaths not going through

a node s, entering and leaving s
= new, more complex diophantine systems
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Two-way m<mﬁm3m-

additional feature: looping over (many) silent blocks before
another automaton send a message

variables denoting the number of such loops

divisibility relations necessary to describe where one au-
tomaton is when the second one sends a message

= systems of linear equations, inegualities and divisibility
relations
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Representation of computation via diophantine sys

e the number of variables and equations, inequalities, divisi-
bilities is O(g), where g is the number of messages

e each computation corresponds to an integer solution of the
system

e ecach integer solution of the system corresponds to an
Input and an computation on it

e a small integer solution = an input with the given number
of messages, where time spent on each silent block is small
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= Silent blocks are short

= Input Is short

the number of messages Is large with respect to the input
length
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Minimal solutionsfor linear diophantine systems

Theorem 3 (von zur Gathen, Sieveking, 1978)

Let A,b,C,d be respectively mxn, mx 1, pxn, px1matri-
ces with integer coefficients with absolute values bounded by a
constant f. If there exists an integer solution x for Ax = b and
Cx > d, then there is a solution x” with absolute values of coef-
ficients bounded by 2°™,

= minimal solutions for our systems describing one-way Sys-
tems of automata are exponential in the number of messages
= existance of inputs for which the number of messages is log-
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arithmic in the input length!
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Diophantine systems with divisibilities

not the general case of diophantine systems of degree 2

Theorem 4 (Lipshitz, 1978)
Diophantine systems with divisibilities are decidable.

proof direction of Lipshitz:
show that an integer solution exists iff there is a solution iIn
modular arithmetic for some large (but bounded) modulus

our job: check how large is the integer solution constructed
by the method of Lipshitz
= lower bound on two-way systems
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Conclusions and open problems:

e a gap between the lower bound w((logloglogn)®) and the
upper bound O(loglogn)

e Dbetter estimations for minimal solutions of diphantine di-
visibilities?

e asynchronous systems: the gap might be larger!
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