Secure Initialization in Single-hop Radio Networks

Mirosław Kutyłowski Wojciech Rutkowski

Wrocław University of Technology

partially supported by Polish Committee for Scientific Research

Overview

- Initialization problem
- Model Details
- Performance goals
- Adversary model
- New Algorithm
- Tricks
- Algorithm overview
- Future work

Initialization problem

Given a Single Hop Radio network, the stations have no ID's. Goal:

- each station gets a number in the range 1..n
- each number is used exactly once

Initialization problem

Given a Single Hop Radio network, the stations have no ID's. Goal:

- each station gets a number in the range 1..n
- each number is used exactly once

Optimize for time and energy costs for each station.

Single-hop radio network

Single-hop radio network

Single Hop Radio Network

(RN, Ad Hoc network)

O(N) processing units called stations
 N might be unknown – size approximation problem

Single Hop Radio Network

- O(N) processing units called stations
 N might be unknown size approximation problem
- the stations are not numbered by consecutive numbers initialization problem

Single Hop Radio Network

- O(N) processing units called stations
 N might be unknown size approximation problem
- the stations are not numbered by consecutive numbers initialization problem
- a single communication channel,
- messages sent simultaneously collide producing a random noise

Single Hop Radio Network

- O(N) processing units called stations
 N might be unknown size approximation problem
- the stations are not numbered by consecutive numbers initialization problem
- a single communication channel,
- messages sent simultaneously collide producing a random noise
- stations cannot detect collisions no collision detection model – no-CD,

Single Hop Radio Network

- O(N) processing units called stations
 N might be unknown size approximation problem
- the stations are not numbered by consecutive numbers initialization problem
- a single communication channel,
- messages sent simultaneously collide producing a random noise
- stations cannot detect collisions no collision detection model – no-CD,
- discrete, synchronous time slots,

Performance Measures

time - the number of time slots

Performance Measures

time - the number of time slots

energy cost - the maximal number *k* such that some station transmits **or** listens *k* times during algorithm execution

Performance Measures

time - the number of time slots

energy cost - the maximal number *k* such that some station transmits **or** listens *k* times during algorithm execution

- communication consumes almost all energy used
- energy required for transmitting and listening of the same magnitude (processor and sensors usage - negligible)
- battery exhaustion issue
- extremely important for practical reasons!

 random transmission errors, or burst errors, or even a malicious adversary knowing the algorithm

- random transmission errors, or burst errors, or even a malicious adversary knowing the algorithm
- legitimate stations have a secret that is not known by the adversary

 \Rightarrow keyed MAC can be used to prevent faking messages by an adversary

- random transmission errors, or burst errors, or even a malicious adversary knowing the algorithm
- legitimate stations have a secret that is not known by the adversary

 \Rightarrow keyed MAC can be used to prevent faking messages by an adversary

 the adversary attempts to cause collisions so that the algorithm fails

- random transmission errors, or burst errors, or even a malicious adversary knowing the algorithm
- legitimate stations have a secret that is not known by the adversary

 \Rightarrow keyed MAC can be used to prevent faking messages by an adversary

- the adversary attempts to cause collisions so that the algorithm fails
- an adversary cannot use much higher communication resources than other users

Tricks - Cryptographic methods

legitimate stations share a secret

Tricks - Cryptographic methods

- legitimate stations share a secret
- all messages are enciphered and indistinguishable from a random noise

Tricks - Cryptographic methods

- legitimate stations share a secret
- all messages are enciphered and indistinguishable from a random noise
- the secret used to initiate a pseudorandom number generator each station can generate the same pseudorandom sequence

Tricks - Time windows

- within a group of steps only one used for communication
- which one is used depends on a pseudo-random value (f) computed from the secret (s) and current time (t)

Drawbacks of time windows

- limited immunity against an adversary
- increase of time

Tricks - Interleaving time windows

Technique used when groups of stations perform concurrently independent computations

- time window of length k used simultaneously by k groups
- for communication, group i uses slot

```
f(\text{secret}, i, t)
```

f - cryptographic pseudorandom permutation

Tricks - Interleaving time windows

Technique used when groups of stations perform concurrently independent computations

- time window of length k used simultaneously by k groups
- for communication, group i uses slot

```
f(\text{secret}, i, t)
```

f - cryptographic pseudorandom permutation

Advantages:

- each slot used no waste of time
- from a point of view of a group the same behavior as for time windows

Leader Election Algorithm (ESA'2003)

assumptions a single-hop no-CD radio network with $\Theta(N)$ stations sharing a secret key. The stations are not initialized with ID's.

Leader Election Algorithm (ESA'2003)

assumptions a single-hop no-CD radio network with $\Theta(N)$ stations sharing a secret key. The stations are not initialized with ID's.

leader election algorithm energy $\cos t - O(\sqrt{\log N})$, time complexity $- O(\log^3 N)$, the outcome might be faulty with probability $O(2^{-\sqrt{\log N}})$ for an adversary with energy cost $O(\log N)$.

Leader Election Algorithm (ESA'2003)

assumptions a single-hop no-CD radio network with $\Theta(N)$ stations sharing a secret key. The stations are not initialized with ID's.

leader election algorithm energy $\cos t - O(\sqrt{\log N})$, time complexity $- O(\log^3 N)$, the outcome might be faulty with probability $O(2^{-\sqrt{\log N}})$ for an adversary with energy cost $O(\log N)$.

additional feature it produces a group of $\Theta(\log N)$ numbered stations.

Leader Election Algorithm (ESA'2003) - overview

$\textit{v} = \Theta(\sqrt{\log \textit{N}})$

- Preprocessing we choose at random v small groups (each of size at most O(log N)) of (pair of) candidates for the leader
- Group elections group election phases executed in group 1, then in group 2, then ...

The first group that succeeds in choosing a group leader "**attacks**" all subsequent group election phases preventing another leader to be chosen.

New Algorithm

Assumptions:

- ► a single-hop no-CD radio network consisting of n = Θ(N) stations
- stations share a secret key
- the stations are not initialized with any ID's, and are aware only of N

New Algorithm

Assumptions:

- ► a single-hop no-CD radio network consisting of n = Θ(N) stations
- stations share a secret key
- the stations are not initialized with any ID's, and are aware only of N

Solution features:

- energy cost $O(\sqrt{\log N})$
- ▶ time O(N),
- ► the outcome is faulty with probability O(2^{-√log N}) in a presence of an adversary with energy cost O(log N).

Idea: gradually increase the set of initialized stations

Phase 1: initialization performed concurrently in $k = \Theta(N/\log^3 N)$ groups of polylogarithmic size;

- Phase 1: initialization performed concurrently in $k = \Theta(N/\log^3 N)$ groups of polylogarithmic size;
- Phase 2: joining the groups from Phase 1 into a single set of $D = \Theta(n/\log^2 N)$ initialized stations whp;

- Phase 1: initialization performed concurrently in $k = \Theta(N/\log^3 N)$ groups of polylogarithmic size;
- Phase 2: joining the groups from Phase 1 into a single set of $D = \Theta(n/\log^2 N)$ initialized stations whp;
- Phase 3: 4 subphases, each of them increase the number of initialized stations by a factor of $\Theta(\sqrt{\log N})$ whp;

- Phase 1: initialization performed concurrently in $k = \Theta(N/\log^3 N)$ groups of polylogarithmic size;
- Phase 2: joining the groups from Phase 1 into a single set of $D = \Theta(n/\log^2 N)$ initialized stations whp;
- Phase 3: 4 subphases, each of them increase the number of initialized stations by a factor of $\Theta(\sqrt{\log N})$ whp;
- Phase 4: $\Omega(N)$ stations initialized; use them to initialize the remaining stations similarly as in Phase 3.

Phase 1: Initialization

- each station chooses independently a group from 1..k
- each group runs (modified) leader election (ESA'2003)
 with interleaving
- ► result: $\Theta(\log^3 N)$ groups of $\Theta(\log N)$ processors.

Phase 1: Initialization

- each station chooses independently a group from 1..k
- each group runs (modified) leader election (ESA'2003)
 with interleaving
- ► result: $\Theta(\log^3 N)$ groups of $\Theta(\log N)$ processors.

What can an adversary do:

- attack at most O(log N) groups
- even attacking a single group difficult leader election is adversary immune!

Phase 2: Joining initialized sets

- counting the number of initialized stations
- ▶ group *i* gets a number *x* of initialized stations in groups 1 through *i* − 1 and initializes its stations with *x*+1, *x*+2, ..., and informs group *i*+1
- if something goes wrong group i discarded

Phase 2: the whole communication pattern

- •
- — •
- •
- •
- •
- •
- group i–1

group i

- •
- •
- •
- •
- •

group i–1

group i

- •
- •
- . .
- •
- ----- •
- •

group i–1

group i–1

group i

Phase 2: broadcast to group *i*

Phase 2: adversary

- the adversary may cause discarding a small number of groups
- but he cannot make the computation inconsistent

Phase 3:

Overview:

 3a already initialized stations split into *collection* groups,
 each groups collects yet uninitialized stations

3b collection groups merged – similarly as in Phase 2

Phase 3a -overview

- some G collection groups formed
- each collection group has a number of auxiliary stations servants that mantain communication there

Phase 3a -overview

- some G collection groups formed
- each collection group has a number of auxiliary stations servants that mantain communication there
- uninitialized stations choose a collection group and step

Phase 3a -overview

- some G collection groups formed
- each collection group has a number of auxiliary stations servants that mantain communication there
- uninitialized stations choose a collection group and step
- inside a group: relay procedure used to collect some number of uninitialized stations that have chosen this group

Relay procedure:

step *t* of a collection group:

- a servant informs about the number of stations collected so far
- each uninitilaized station that has chosen this group and t responds
- if no collision (SINGLE message), the servant sends an acknowledgment

Relay procedure:

step *t* of a collection group:

- a servant informs about the number of stations collected so far
- each uninitilaized station that has chosen this group and t responds
- if no collision (SINGLE message), the servant sends an acknowledgment

Design problems:

- a servant used only $O(\sqrt{\log n})$ times
- fine design of switching the roles between the servants
- an adversary cannot cause inconsistencies even if some of the messages get scrumbled what happens if the acknowledgment comes not through?

Remarks and conlusions

- if the adversary detects an encoded transmission to late for collision, our techniques still work
- multihop networks
- small network sizes: as always a combination of the same tricks but tuned for the size of *n* (e.g. √n might be smaller than log² n)

Secure Initialization in Single-hop Radio Networks

The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation.

http://www.humboldt-foundation.de

Mirosław Kutyłowski, Wojciech Rutkowski