
Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Supervised Usage of Signature Creation
Devices

Przemysław Kubiak, Mirosław Kutyłowski

Wrocław University of Technology
Wrocław, Poland

INSCRYPT 2013, Guangzhou



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Electronic signatures
security – not only cryptographic schemes

what we need to intrust electronic signatures?
1 a good cryptographic scheme
2 a secure device “implementing” secret signing key
3 effective control over this device by the signatory



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Electronic signatures
security – not only cryptographic schemes

what we need to intrust electronic signatures?
1 a good cryptographic scheme
2 a secure device “implementing” secret signing key
3 effective control over this device by the signatory



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Secure Signature Creation Device (SSCD)

Properties of SSCD
1 implementation: the signing key can be used for

creating signatures
2 no other possibilities

– including in particular exporting the key outside the
SSCD

3 logical and physical protection of the signing key
4 SSCD must be activated by the user



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Problems with SSCD

Major issues with SSCD
physical protection is a “mouse and a cat game”,
the protection effective today might fail tomorrow
usually: activation = entering a PIN number

Threats related to PIN
1 the PC learns the PIN, unless the keyboard with the

reader
2 learning the PIN by observing the signatory



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Further Problems with SSCD

How do you know how the SSCD is used?
maybe there is a clone of the SSCD
maybe there is a second PIN that is used as a
back-door

You trust the issuer and you cannot prove anything in a
case of a fraud.



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Electronic signatures and the ENRON-like
cases

Completeness of documentation
In many cases it would save us a lot of problems to
know that the list of signatures created with a SSCD is
the complete list of the signatures created with this
SSCD.

Examples
financial bookkeeping
think about the ENRON case

signatures by the legal representatives of legal persons
electronic document flow in corporations
detecting clones of a SSCD



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Design Goals

Inspection procedure
A Third Trusted Party would be able to check whether

the list of signatures presented is the complete list of
signatures created with a given SSCD
... without seeing the documents signed

Signature format
preferably, the signatures should be verified with exactly the
same way as standard signatures



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Naive Solution

Counter in the signature
an extra field with the serial number

Problems:
serial numbers in plaintext – the signature recipients
gets more information than intended
encrypted serial numbers – signing random values?
Potentially dangerous.
legal problems: e.g. European Directive prohibits
changing the document to be signed by the SSCD



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Alternative Solutions

Mediated signatures

would not help in case of ENRON (if the mediator run by the
company)

Stamp&Extend (INTRUST 2012)
cannot be run by a smart card alone, a solution for a server



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Signatures suited for CTRL-Sign

CTRL-Sign reuses r = gk the signature component
r = gk , where k chosen at random
r might be given explicitly (ElGamal) or can be
reconstructed (in particular: Schnorr, DSA, ECDSA,
Guillou-Quisquater, Nyberg-Rueppel)

For example Schnorr:

1 choose k ∈ [1,q−1] uniformly at random,

2 r := gk ,

3 e := Hash(M, r),

4 s := (k −x ·e) mod q.

5 output signature (e,s).

Note that gs ·ye = r , where y = gx



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Actors of CTRL-Sign

Protocol participants
Card Issuer: produces SSCD and installs system-wide

parameters,
Certification Authority (CA): issue certificates for public

keys of the signatories
signatories: hold SSCDs and create signatures

verifiers: verify signatures in the standard way
Inspection Authority (IA): check whether the presented lists

of signatures created by SSCD are complete



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Setup

Keys
Inspection Authority: secret key kmaster . For a user U:

the control key cU := Hash1(U,kmaster ),
the private inspection key
iU = Hash2(U,kmaster ),
the public inspection key IU = g iU .

Card Issuer: for a user U, installs cU and IU in the SSCD
issued for U.

Signatory U : the preinstalled keys cU , IU ,
the private signing key xU ,
the public key XU = gxU .

Certification Authority: as usual for X.509 framework.



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

CTRL-Sign – Signature Creation

Signature creation procedure
the original scheme with slight changes concerning the
choice of k

1 generate k at random,
2 check the hidden footprint of k , if it is incorrect return to

step 1,
3 proceed Sign for the parameter k chosen.

Hidden footprint
input: IU ,k
footprint := Hash3(Ik

U)

output d least significant bits of footprint



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Hidden footprints

For the SSCD of user U
the key cU shared by SSCD and the Inspection
Authority used to derive a control sequence

RANDU := PRNG(cU)

RANDU determines footprint values:

RANDU = ρ
1
Uρ

2
U . . .

where each ρ i
U is a d-bit string

ρ i
U is the footprint of the ith signature created by

the SSCD of user U



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

CTRL-Sign – Signature Verification

according to the standard procedure

the CTRL-Sign does not contain any extra fields to be
checked
only the parameter r = gk is chosen in a special way ...
... but neither a verifier nor a signatory can check it
(this is a security requirement)



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Inspection Procedure

the way used during signature creation cannot be used as
the parameter k cannot be revealed to IA . But:

Ik
U = g iuk = (gk )iU

(borrowed from kleptography by Young&Yung)

checking footprints by IA

recompute ρ1
Uρ2

U . . . using the shared key cU

for the i th signature with parameter ri

compute Hash(r iU
i )

check if its last d bits are equal to ρ i
U



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Manipulations and the Inspection Outcome

Asking for signatures in the court

The judge can request to use the SSCD in the court. Then
the list of signatures appended with the requested number
of last signatures

Probability of an unnoticed replacement
The signatory cannot compute the footprint, so has to try
blindly. It succeeds with probability 2−d for a single
signature.



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Manipulations and the Inspection Outcome

Assume a single signature was removed form the list
If signature t removed:

the footprints originally ρ1,. . . , ρt−1, ρt , ρt+1, . . . , ρN

after removing: ρ1,. . . , ρt−1, ρt+1, . . . , ρN

it follows that:
ρt = ρt+1, ρt+1 = ρt+2, . . . , ρN−1 = ρN

unlikely, situation unknown to the adversary

Removing k signatures

One can observe that then there are
N− t +k

equalities for the values ρ
j
U to be satisfied, where t is the

position of the first omitted signature and N is the index of
the last signature created



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Key Privacy

Problem
The Inspection Authority has some additional knowledge
about the signatures: for each signature with r = gk , it
knows d bits of Hash3(Ik

U).

Result
Showing that if there is an attack with the keys held by IA,
then there is an attack on the background signature scheme
in the ordinary setting (only more signatures are needed)



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Secrecy of Footprints

Problem
The footprints are secure, if the CTRL-Sign lists of
signatures are indistinguishable from the lists generated in
the ordinary way.

Proof
In order to get a rigorous formal proof we have to modify
slightly the scheme -Enhanced CTRL-Sign



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Enhanced CTRL-Sign

input: t , message M, secret keys bU , cU , xU , public key IU

1 RANDU := PRNG(cU) and extract ρ t
U from RANDU

2 k (t)
2 := Hash5(bU , i)

3 choose k1 at random

4 z := Ik1
U

5 while ρ i
U 6= the last d bits of Hash3(z) do

6 k1 =: k1 +1,

7 z := z · IU

8 k := k1 +k (t)
2

9 r := gk

10 generate a signature S = (r ,s) for the message M using k
and r



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Enhanced CTRL-Sign

note that IA can compute
(
r/gk (t)

2
)iU and that(

r/gk (i)
2
)iU =

(
gk−k (i)

2
)iU =

(
gk1

)iU = Ik1
A

For security:
now r has the uniform probability distribution



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Implementation Issues

Computation time
in order to find a proper exponent one has to try
different choices of k
we cannot make more than 1 exponentiation –
otherwise the smart card implementation could be too
slow
since the footprint values are taken from Hash3(Ik

U)
even for related values of k we get “random
independent” footprints



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Efficient Search for k

Procedure

R := Ik
U

while Hash3(R) 6= ρ i
U do

k =: k +1;
R := R · IU

end
r := gk

Time complexity, extra operations:
one extra exponentiation
a few multiplications and hash evaluations (negligible
time)



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Experimental results

operation MultiApp ID MultiApp ID
Dual Citizen

144K CC v2.0 144K ECC v2.1
Infineon NXP

scalar multiplication 186 ms 104 ms
ECDSA signature with SHA1 191 ms 111 ms
ECDSA signature with SHA256 194 ms 112 ms
verification of ECDSA+SHA1 140 ms 112 ms
verification of ECDSA +SHA256 141 ms 115 ms
SHA-1 computation 4 ms 4 ms
SHA-256 computation 8.6 ms 6.4 ms

experimental results, Gemalto Java cards and 256-bit elliptic curve



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Implementation

Problem with Multiplication /Point Addition
Problem: multiplication is not as a primitive to be used
as a call to secure co-processor

Java implementation - too slow
tricks - via exponentiation – the resulting cost of an
exponentiation
an internal implementation is necessary - only the
manufacturer has the right to do it



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Hiding Extra Operations

Saving time

computing gk and Ik
U at the same time

to prevent leaking via computation time:
unnecessary multiplications performed while performing
exponentiations
(a squaring per bit of the exponent, multiplications
corresponding to 1’s in the binary representation of the
exponent
this time can be used instead for the extra operations



Ctrl-Sign

Kubiak,
Kutyłowski

Introduction

Scheme

Security

Implementation

Thanks for your attention!

Contact data
1 Miroslaw.Kutylowski@pwr.wroc.pl

2 http://kutylowski.im.pwr.wroc.pl

3 +48 71 3202109, +48 71 3202105
fax: +48 71 3202105

Miroslaw.Kutylowski@pwr.wroc.pl
http://kutylowski.im.pwr.wroc.pl

	Introduction
	Scheme
	Security
	Implementation

