A Revocation Scheme Preserving Privacy

Łukasz Krzywiecki, Przemysław Kubiak, Mirosław Kutyłowski

Institute of Mathematics and Computer Science Wrocław University of Technology

INSCRYPT, Beijing 2006

Introduction

Lagrangian Interpolation in the Exponent

- Initialization
- Registration
- Encryption and Decryption
- The Decryption Procedure
- User Anonymity
 - Problem of Fixed Shares
 - The Proposed Solution
 - A Naive Approach
 - The Init Procedure
 - The Registration Procedure
 - The Encoding Procedure
 - The Decryption Procedure

Revocation problem in broadcasting systems

- broadcast of encrypted data,
- access to data only with a decryption key
- the decryption key shown only to the users that pay for transmission.

Revocation problem in broadcasting systems

- broadcast of encrypted data,
- access to data only with a decryption key
- the decryption key shown only to the users that pay for transmission.

Main problem – removing some number of users from the system:

change the key so that the new key can be decoded only by the non-removed users

Goal 1: low communication – communication overhead due to messages encoding the new key should be minimized,

Goal 2: user anonymity – analysis of data sent does not reveal user's behavior,

the second feature has been neglected so far

Initialization Registration Encryption and Decryption The Decryption Procedure

Revocation via Lagrangian Interpolation in the Exponent

Communication Complexity

Let *z* be a parameter denoting an upper bound for the number of revoked users.

Then message required to change the key has length O(z).

Message length **does not depend** on the number of users that remain.

Initialization Registration Encryption and Decryption The Decryption Procedure

Initialization

Procedure Init_{BE}

input the maximum number of revoked users z, output master secret SK_{BE} , which is a random polynomial L(x) of degree z.

Initialization Registration Encryption and Decryption The Decryption Procedure

Registration of a User

Procedure Reg_{BE}

input master secret SK_{BE} and a new user u,

output user's *u* secret share $SK_{u,BE} = (x_u, L(x_u))$.

Initialization Registration Encryption and Decryption The Decryption Procedure

Encoding a New Key

Construction of *H* will follow.

Initialization Registration Encryption and Decryption The Decryption Procedure

Deriving a new Key

Procedure Dec_{BE} input • the enabling block *H*, • user's *u* secret share *SK*_{*u*,BE}, output session key *K*, if *u* is a legitimate user, otherwise *error*.

Initialization Registration Encryption and Decryption The Decryption Procedure

Enabling block H

ヘロト 人間 トイヨト イヨト

3

Initialization Registration Encryption and Decryption The Decryption Procedure

Lagrangian Interpolation in the Exponent

Given: z + 1 pairs $(x_u, g^{rL(x_u)})$

then $g^{rL(0)}$ can be reconstructed by Lagrangian Interpolation in the Exponent.

イロト 不得 とくほと くほとう

Initialization Registration Encryption and Decryption The Decryption Procedure

Lagrangian Interpolation in the Exponent

Given: z + 1 pairs $(x_u, g^{rL(x_u)})$

then $g^{rL(0)}$ can be reconstructed by Lagrangian Interpolation in the Exponent.

indeed:

$$g^{rL(0)} = \prod_{0 \le u \le z} (g^{rL(x_u)})^{\lambda_u(0)} = g^{r \sum_{u=0}^z L(x_u) \lambda_u(0)}$$

where $\lambda_u(x) = \prod_{0 \le v \le z, v \ne u} \frac{x - x_v}{x_u - x_v}$,

and g is a generator of a cyclic group G of prime order q.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

• a key K is encoded as $K \cdot g^{rL(0)}$,

Initialization Registration Encryption and Decryption The Decryption Procedure

Exclusion Idea

Wrocław University of Technology

3

イロト イポト イヨト イヨト

Ł. Krzywiecki, P. Kubiak, M. Kutyłowski A Revocation Scheme Preserving Privacy

Initialization Registration Encryption and Decryption The Decryption Procedure

Exclusion Idea

- a key K is encoded as $K \cdot g^{rL(0)}$,
- if user u has to be excluded, then the share (x_u, g^{rL(x_u)}) is in the enabling block,
- exactly z shares are included in the enabling block,

Initialization Registration Encryption and Decryption The Decryption Procedure

Exclusion Idea

- a key K is encoded as $K \cdot g^{rL(0)}$,
- if user u has to be excluded, then the share (x_u, g^{rL(x_u)}) is in the enabling block,
- exactly z shares are included in the enabling block,
- a non-excluded user v can construct one more share:
 x_v, (g^r)^{L(x_v)}.
- an excluded user has not enough shares for applying Lagrangian interpolation.

Problem of Fixed Shares

Privacy Threats

Problem

Values x_u are the same in subsequent sessions for user u.

Possible threats from an Adversary

- analyzing activity of the users,
- resolving users' preferences,
- finding behavioral patterns for groups,

Threats for a single user as well as leaking global characteristics of system usage.

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

Solution Idea - How to Ensure Anonymity

Let users' shares change

according to some random polynomial $x_u(t)$.

- $x_u(t)$ is known only to the broadcaster and user u,
- for each enabling block a random parameter t_{ℓ} is chosen,
- if *u* gets excluded, then the enabling block contains value $x_u(t_\ell)$, which does not reveal *u*.

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

A Naive Approach – Initialization

Init_{BE}

input the maximum number of revoked users z, output master secret SK_{BE} which is a polynomial

$$L(t,x) = \sum_{i=0}^{z} (a_i(t) \cdot x^i)$$
 where $a_i(t) = \sum_{j=0}^{\alpha} a_{i,j}t^j$

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

A Naive Approach – Registration

Reg_{BE}

input master secret SK_{BE} and a new user index *u* output user secret share $SK_{\mu} = (x_{\mu}(t), L(t, x_{\mu}(t)))$.

 $x_u(t)$ generated at random, $L(x_u(t))$ obtained via superposition:

$$L(t, x_u(t)) = \sum_{i=0}^{z} \left(a_i(t) \cdot x_u(t)^i \right) = \sum_{k=0}^{\alpha z} c_k t^k$$

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

An Attack on the Naive Scheme

A malicious user u' takes arbitrary $t_0, t_2, \ldots, t_{\alpha+z\beta}$ and solves linear equation system

$$\begin{cases} L(t_1, x_{u'}(t_0)) &= \sum_{i=0}^{z} \left(\sum_{j=0}^{\alpha} a_{i,j} t_0^j \right) \cdot (x_{u'}(t_0))^i \\ \vdots & \vdots \\ L(t_{\alpha+z\beta}, x_{u'}(t_{\alpha+z\beta})) &= \sum_{i=0}^{z} \left(\sum_{j=0}^{\alpha} a_{i,j} t_{\alpha+z\beta}^j \right) \cdot (x_{u'}(t_{\alpha+z\beta}))^i \end{cases}$$

イロト イヨト イヨト

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

An Attack on the Naive Scheme

۲

A malicious user u' takes arbitrary $t_0, t_2, \ldots, t_{\alpha+z\beta}$ and solves linear equation system

$$\begin{cases} L(t_1, x_{u'}(t_0)) &= \sum_{i=0}^{z} \left(\sum_{j=0}^{\alpha} a_{i,j} t_0^j \right) \cdot (x_{u'}(t_0))^i \\ \vdots &\vdots \\ L(t_{\alpha+z\beta}, x_{u'}(t_{\alpha+z\beta})) &= \sum_{i=0}^{z} \left(\sum_{j=0}^{\alpha} a_{i,j} t_{\alpha+z\beta}^j \right) \cdot (x_{u'}(t_{\alpha+z\beta}))^i \end{cases}$$

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

> University f Technology

イロト イポト イヨト イヨト

Our Solution – Initialization

Procedure Init_{BE}

input the maximum number z of revoked users, and the number z_d of dummy "users",

output master secret SKBE, consisting of polynomials:

$$egin{aligned} \mathcal{L}(t,x) &= \sum_{i=0}^{z+z_d}{(a_i(t)\cdot x^i)}, & ext{where} & a_i(t) &= \sum_{j=0}^{lpha}{a_{i,j}t^j} \ \mathcal{S}(t) &= \sum_{j=0}^{\gamma}{s_j\cdot t^j} \end{aligned}$$

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

Our Solution – Registration

Procedure Reg_{BE}

input the master secret SK_{BE} and a new user u,

output user's *u* secret share $SK_u = (x_u(t), P_u(t), g^{Q_u(t)})$,

where

 $P_u(t), Q_u(t)$

are some polynomials such that

$$L(t, x_u(t)) = \sum_{i=0}^{z+z_d} \left(a_i(t) \cdot x_u(t)^i \right) = P_u(t) + Q_u(t) \cdot S(t).$$

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

> octaw iversity

Our Solution – The Enabling Block

Header Construction

Ł. Krzywiecki, P. Kubiak, M. Kutyłowski A Revocation Scheme Preserving Privacy

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

A Legitimate User *u* Computes the Session Key K

First she computes her own share • $x_u(t_0)$, • $g^{rL(t_0,x_u(t_0))} = (g^r)^{P_u(t_0)} \cdot (g^{Q_u(t_0)})^{rS(t_0)} = g^{rP_u(t_0) + rQ_u(t_0)S(t_0)}$.

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

User *u* Computes the Session Key *K*

Given: $z + z_d + 1$ pairs $(\psi_u, g^{rL(t_0, \psi_u)})$

Mask $g^{rL(t_0,x_0)}$ can be reconstructed by Lagrangian Interpolation in the exponent, and *K* can be derived from $K \cdot g^{rL(t_0,x_0)}$ available in the enabling block.

$$g^{rL(t_0,x_0)} = \prod_{0 \le u \le z+z_d} (g^{rL(t_0,\psi_u)})^{\lambda_u(x_0)} = g^{r \sum_{u=0}^{z+z_d} L(t_0,\psi_u)\lambda_u(x_0)},$$

where $\lambda_u(x) = \prod_{0 \le v \le z+z_d, v \ne u} \frac{x - \psi_v}{\psi_u - \psi_v}$ and $\psi_u = x_u(t_0)$ for a real

Wrocław University of Technology

user u, but ψ_u is a random value for a dummy "user".

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

Why the Attack Does Not Work

a malicious user u'

this time has to cope with equation system in the exponent, with unknown L(t, x), $Q_u(t)$, S(t)

$$\begin{cases} g^{L(t_1,x_{u'}(t_1))} = g^{P_{u'}(t_1)+Q_{u'}(t_1)S(t_1)} = ?\\ \vdots & \vdots & \vdots \\ g^{L(t_n,x_{u'}(t_n))} = g^{P_{u'}(t_n)+Q_{u'}(t_n)S(t_n)} = ? \end{cases}$$

u' does not know the values "?", from headers he knows only $g^{rL(t_i, x_{u'}(t_i))}$, where *r* is random for each new header.

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

Why the Attack Does Not Work

a malicious user u'

ł

this time has to cope with equation system in the exponent, with unknown L(t, x), $Q_u(t)$, S(t)

$$\begin{cases} g^{L(t_1,x_{u'}(t_1))} = g^{P_{u'}(t_1)+Q_{u'}(t_1)S(t_1)} = ?\\ \vdots & \vdots & \vdots \\ g^{L(t_n,x_{u'}(t_n))} = g^{P_{u'}(t_n)+Q_{u'}(t_n)S(t_n)} = ? \end{cases}$$

u' does not know the values "?", from headers he knows only $g^{rL(t_i, x_{u'}(t_i))}$, where *r* is random for each new header.

Getting any of the L(t, x), $Q_u(t)$, S(t) for such a system is a hard problem.

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

Security of the Scheme

 Values r · S(t₀) are present in the header, where r and t₀ are freshly generated for each new header.

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

Security of the Scheme

- Values r · S(t₀) are present in the header, where r and t₀ are freshly generated for each new header.
- r and $S(t_0)$ mask each other.

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

Security of the Scheme

- Values $r \cdot S(t_0)$ are present in the header, where r and t_0 are freshly generated for each new header.
- r and $S(t_0)$ mask each other.
- If the values could be separated, the system would be broken.

• ...

Further details in the paper.

Introduction Lagrangian Interpolation in the Exponent User Anonymity The Proposed Solution The Context Solution

Thank you for your attention!

3

イロト イポト イヨト イヨト

Ł. Krzywiecki, P. Kubiak, M. Kutyłowski A Revocation Scheme Preserving Privacy

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

3

イロン イ団と イヨン イヨン

A Naive Approach The Init Procedure The Registration Procedure The Encoding Procedure The Decryption Procedure

3

イロン イ団と イヨン イヨン

• u' knows $P_{u'}$, hence he might compose a system

$$\begin{cases} L(t_1, x_{u'}(t_1)) - Q_{u'}(t_1)S(t_1) &= P_{u'}(t_1) \\ \vdots & \vdots & \vdots \\ L(t_n, x_{u'}(t_n)) - Q_{u'}(t_n)S(t_n) &= P_{u'}(t_n). \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

• u' knows $P_{u'}$, hence he might compose a system

$$\begin{cases} L(t_1, x_{u'}(t_1)) - Q_{u'}(t_1)S(t_1) = P_{u'}(t_1) \\ \vdots & \vdots \\ L(t_n, x_{u'}(t_n)) - Q_{u'}(t_n)S(t_n) = P_{u'}(t_n). \end{cases}$$

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ ・ の へ の ・

• Denote by $L_u(t)$ the polynomial $L(t, x_u(t)) = \sum_{j=0}^{\alpha + (z+z_d)\beta} c_{u,j} t^j$.

• u' knows $P_{u'}$, hence he might compose a system

$$\begin{cases} L(t_1, x_{u'}(t_1)) - Q_{u'}(t_1)S(t_1) &= P_{u'}(t_1) \\ \vdots & \vdots & \vdots \\ L(t_n, x_{u'}(t_n)) - Q_{u'}(t_n)S(t_n) &= P_{u'}(t_n). \end{cases}$$

- Denote by $L_u(t)$ the polynomial $L(t, x_u(t)) = \sum_{j=0}^{\alpha + (z+z_d)\beta} c_{u,j} t^j$.
- Hence u' might "calculate" coefficients of the polynomial $L_{u'}(t) Q_{u'}(t)S(t)$

• u' knows $P_{u'}$, hence he might compose a system

$$\begin{cases} L(t_1, x_{u'}(t_1)) - Q_{u'}(t_1)S(t_1) &= P_{u'}(t_1) \\ \vdots & \vdots & \vdots \\ L(t_n, x_{u'}(t_n)) - Q_{u'}(t_n)S(t_n) &= P_{u'}(t_n). \end{cases}$$

- Denote by $L_u(t)$ the polynomial $L(t, x_u(t)) = \sum_{j=0}^{\alpha + (z+z_d)\beta} c_{u,j} t^j$.
- Hence u' might "calculate" coefficients of the polynomial $L_{u'}(t) - Q_{u'}(t)S(t)$ $= [L_{u'}(t) + \alpha(t)S(t)] - [Q_{u'}(t) - \alpha(t)]S(t)$

▲ロト ▲園ト ▲画ト ▲画ト 三連 - のへで

• u' knows $P_{u'}$, hence he might compose a system

$$\begin{cases} L(t_1, x_{u'}(t_1)) - Q_{u'}(t_1)S(t_1) &= P_{u'}(t_1) \\ \vdots & \vdots & \vdots \\ L(t_n, x_{u'}(t_n)) - Q_{u'}(t_n)S(t_n) &= P_{u'}(t_n). \end{cases}$$

- Denote by $L_u(t)$ the polynomial $L(t, x_u(t)) = \sum_{j=0}^{\alpha + (z+z_d)\beta} c_{u,j} t^j$.
- Hence u' might "calculate" coefficients of the polynomial $L_{u'}(t) Q_{u'}(t)S(t)$ = $[L_{u'}(t) + \alpha(t)S(t)] - [Q_{u'}(t) - \alpha(t)]S(t) = P_{u'}(t).$

▲ロト ▲園ト ▲画ト ▲画ト 三連 - のへで

• u' knows $P_{u'}$, hence he might compose a system

$$\begin{cases} L(t_1, x_{u'}(t_1)) - Q_{u'}(t_1)S(t_1) &= P_{u'}(t_1) \\ \vdots & \vdots & \vdots \\ L(t_n, x_{u'}(t_n)) - Q_{u'}(t_n)S(t_n) &= P_{u'}(t_n). \end{cases}$$

- Denote by $L_u(t)$ the polynomial $L(t, x_u(t)) = \sum_{j=0}^{\alpha + (z+z_d)\beta} c_{u,j} t^j$.
- Hence u' might "calculate" coefficients of the polynomial $L_{u'}(t) Q_{u'}(t)S(t)$ = $[L_{u'}(t) + \alpha(t)S(t)] - [Q_{u'}(t) - \alpha(t)]S(t) = P_{u'}(t).$
- Note that almost any α(t) such that deg α ≤ deg Q_{u'} does not change the degree of "polynomial" g^{Q_{u'}} known to u'. Hence almost each of the |p|^{1+deg Q_{u'}} possibilities is a right solution for the above system.

▲ロト ▲園ト ▲画ト ▲画ト 三連 - のへで