# A Revocation Scheme Preserving Privacy 

Łukasz Krzywiecki, Przemysław Kubiak, Mirosław Kutyłowski

Institute of Mathematics and Computer Science

Wrocław University of Technology

INSCRYPT, Beijing 2006
(1) Introduction
(2) Lagrangian Interpolation in the Exponent

- Initialization
- Registration
- Encryption and Decryption
- The Decryption Procedure
(3) User Anonymity
- Problem of Fixed Shares

4) The Proposed Solution

- A Naive Approach
- The Init Procedure
- The Registration Procedure
- The Encoding Procedure
- The Decryption Procedure


## Revocation problem in broadcasting systems

- broadcast of encrypted data,
- access to data only with a decryption key
- the decryption key shown only to the users that pay for transmission.


## Revocation problem in broadcasting systems

- broadcast of encrypted data,
- access to data only with a decryption key
- the decryption key shown only to the users that pay for transmission.


## Main problem - removing some number of users from the system:

change the key so that the new key can be decoded only by the non-removed users

## Goals

Goal 1: low communication - communication overhead due to messages encoding the new key should be minimized,

Goal 2: user anonymity - analysis of data sent does not reveal user's behavior,
the second feature has been neglected so far

## Revocation via Lagrangian Interpolation in the Exponent

## Communication Complexity

Let $z$ be a parameter denoting an upper bound for the number of revoked users.
Then message required to change the key has length $O(z)$.
Message length does not depend on the number of users that remain.

## Initialization

## Procedure Init ${ }_{B E}$

input the maximum number of revoked users $z$, output master secret $S K_{\mathrm{BE}}$, which is a random polynomial $L(x)$ of degree $z$.

## Registration of a User

## Procedure Reg ${ }_{B E}$

input master secret $S K_{B E}$ and a new user $u$, output user's $u$ secret share $S K_{u, B E}=\left(x_{u}, L\left(x_{u}\right)\right)$.

## Encoding a New Key

## Procedure Enc $\mathrm{BE}_{\mathrm{BE}}$

 input- the master secret $S K_{B E}$,
- a new session key $K$,
- a set of users to be revoked, of cardinality $\leq z$ output so called enabling block $H$.

Construction of $H$ will follow.

## Deriving a new Key

## Procedure Dec ${ }_{\text {be }}$

input

- the enabling block $H$,
- user's $u$ secret share $S K_{u, B E}$, output session key $K$, if $u$ is a legitimate user, otherwise error.


## Enabling block $H$



## Lagrangian Interpolation in the Exponent

Given: $z+1$ pairs $\left(x_{u}, g^{r L\left(x_{u}\right)}\right)$
then $g^{r L(0)}$ can be reconstructed by Lagrangian Interpolation in the Exponent.

## Lagrangian Interpolation in the Exponent

Given: $z+1$ pairs $\left(x_{u}, g^{r L\left(x_{u}\right)}\right)$
then $g^{r L(0)}$ can be reconstructed by Lagrangian Interpolation in the Exponent.
indeed:

$$
g^{r L(0)}=\prod_{0 \leq u \leq z}\left(g^{r L\left(x_{u}\right)}\right)^{\lambda_{u}(0)} \quad=g^{r \sum_{u=0}^{z} L\left(x_{u}\right) \lambda_{u}(0)}
$$

where $\lambda_{u}(x)=\prod_{0 \leq v \leq z, v \neq u} \frac{x-x_{v}}{x_{u}-x_{v}}$,
and $g$ is a generator of a cyclic group $G$ of prime order $q$.

## Exclusion Idea

- a key $K$ is encoded as $K \cdot g^{r L(0)}$,


## Exclusion Idea

- a key $K$ is encoded as $K \cdot g^{r L(0)}$,
- if user $u$ has to be excluded, then the share $\left(x_{u}, g^{r L\left(x_{u}\right)}\right)$ is in the enabling block,
- exactly $z$ shares are included in the enabling block,


## Exclusion Idea

- a key $K$ is encoded as $K \cdot g^{r L(0)}$,
- if user $u$ has to be excluded, then the share $\left(x_{u}, g^{r L\left(x_{u}\right)}\right)$ is in the enabling block,
- exactly $z$ shares are included in the enabling block,
- a non-excluded user $v$ can construct one more share: $x_{v},\left(g^{r}\right)^{L\left(x_{v}\right)}$.
- an excluded user has not enough shares for applying Lagrangian interpolation.


## Privacy Threats

## Problem

Values $x_{u}$ are the same in subsequent sessions for user $u$.
Possible threats from an Adversary

- analyzing activity of the users,
- resolving users' preferences,
- finding behavioral patterns for groups,

Threats for a single user as well as leaking global characteristics of system usage.

## Solution Idea - How to Ensure Anonymity

## Let users' shares change

 according to some random polynomial $x_{U}(t)$.- $x_{u}(t)$ is known only to the broadcaster and user $u$,
- for each enabling block a random parameter $t_{\ell}$ is chosen,
- if $u$ gets excluded, then the enabling block contains value $x_{u}\left(t_{\ell}\right)$, which does not reveal $u$.


## A Naive Approach - Initialization

## Init ${ }_{B E}$

input the maximum number of revoked users $z$, output master secret $S K_{\text {BE }}$ which is a polynomial

$$
L(t, x)=\sum_{i=0}^{z}\left(a_{i}(t) \cdot x^{i}\right) \quad \text { where } \quad a_{i}(t)=\sum_{j=0}^{\alpha} a_{i, j} t^{j}
$$

## A Naive Approach - Registration

## Reg $_{b E}$

input master secret $S K_{B E}$ and a new user index $u$ output user secret share $S K_{u}=\left(x_{u}(t), L\left(t, x_{u}(t)\right)\right)$.
$x_{u}(t)$ generated at random, $L\left(x_{u}(t)\right)$ obtained via superposition:

$$
L\left(t, x_{u}(t)\right)=\sum_{i=0}^{z}\left(a_{i}(t) \cdot x_{u}(t)^{i}\right)=\sum_{k=0}^{\alpha z} c_{k} t^{k}
$$

## An Attack on the Naive Scheme

A malicious user $u^{\prime}$ takes arbitrary $t_{0}, t_{2}, \ldots, t_{\alpha+z \beta}$ and solves linear equation system

$$
\left\{\begin{array}{ccc}
L\left(t_{1}, x_{u^{\prime}}\left(t_{0}\right)\right) & = & \sum_{i=0}^{z}\left(\sum_{j=0}^{\alpha} a_{i, j} j_{0}^{j}\right) \cdot\left(x_{u^{\prime}}\left(t_{0}\right)\right)^{i} \\
\vdots & \vdots & \vdots \\
L\left(t_{\alpha+z \beta}, x_{u^{\prime}}\left(t_{\alpha+z \beta}\right)\right) & = & \sum_{i=0}^{z}\left(\sum_{j=0}^{\alpha} a_{i, j} j_{\alpha+z \beta}^{j}\right) \cdot\left(x_{u^{\prime}}\left(t_{\alpha+z \beta}\right)\right)^{i}
\end{array}\right.
$$

## An Attack on the Naive Scheme

A malicious user $u^{\prime}$ takes arbitrary $t_{0}, t_{2}, \ldots, t_{\alpha+z \beta}$ and solves linear equation system

$$
\left\{\begin{array}{ccc}
L\left(t_{1}, x_{u^{\prime}}\left(t_{0}\right)\right) & = & \sum_{i=0}^{z}\left(\sum_{j=0}^{\alpha} a_{i, j} j_{0}^{j}\right) \cdot\left(x_{u^{\prime}}\left(t_{0}\right)\right)^{i} \\
\vdots & \vdots & \vdots \\
L\left(t_{\alpha+z \beta}, x_{u^{\prime}}\left(t_{\alpha+z \beta}\right)\right) & = & \sum_{i=0}^{z}\left(\sum_{j=0}^{\alpha} a_{i, j} j_{\alpha+z \beta}^{j}\right) \cdot\left(x_{u^{\prime}}\left(t_{\alpha+z \beta}\right)\right)^{i}
\end{array}\right.
$$

## Adversary breaks the schema

he learns master secret $S K_{\mathrm{BE}}$, i.e. "coefficients" of $L(t, x)$.

## Our Solution - Initialization

## Procedure Init ${ }_{\text {BE }}$

input the maximum number $z$ of revoked users, and the number $z_{d}$ of dummy "users", output master secret $S K_{\mathrm{BE}}$, consisting of polynomials:

$$
L(t, x)=\sum_{i=0}^{z+z_{d}}\left(a_{i}(t) \cdot x^{i}\right), \quad \text { where } \quad a_{i}(t)=\sum_{j=0}^{\alpha} a_{i, j} t^{j}
$$

$$
S(t)=\sum_{j=0}^{\gamma} s_{j} \cdot t^{j}
$$

## Our Solution - Registration

## Procedure Reg ${ }_{B E}$

input the master secret $S K_{\mathrm{BE}}$ and a new user $u$, output user's $u$ secret share $S K_{u}=\left(x_{u}(t), P_{u}(t), g^{Q_{u}(t)}\right)$,
where

$$
P_{u}(t), Q_{u}(t)
$$

are some polynomials such that

$$
L\left(t, x_{u}(t)\right)=\sum_{i=0}^{z+z_{d}}\left(a_{i}(t) \cdot x_{u}(t)^{i}\right)=P_{u}(t)+Q_{u}(t) \cdot S(t)
$$

## Our Solution - The Enabling Block

## Header Construction

$$
\sigma_{S K}\left(H 2 \| E_{K}(M 2)\right), g^{r}, K g^{r L\left(t_{0}, x_{0}\right)}, t_{0}, x_{0}, r S\left(t_{0}\right)
$$

H1 Contents : $E_{K}(M 1) \quad H 2 \quad$ Contents : $E_{K}(M 2)$

BroadcastStream

## A Legitimate User u Computes the Session Key K

## First she computes her own share

- $x_{u}\left(t_{0}\right)$,
- $g^{r L\left(t_{0}, x_{u}\left(t_{0}\right)\right)}=\left(g^{r}\right)^{P_{u}\left(t_{0}\right)} \cdot\left(g^{Q_{u}\left(t_{0}\right)}\right)^{r S\left(t_{0}\right)}=g^{r P_{u}\left(t_{0}\right)+r Q_{u}\left(t_{0}\right) S\left(t_{0}\right)}$.


## User u Computes the Session Key K

Given: $z+z_{d}+1$ pairs $\left(\psi_{u}, g^{r L\left(t_{0}, \psi_{u}\right)}\right)$
Mask $g^{r L\left(t_{0}, x_{0}\right)}$ can be reconstructed by Lagrangian Interpolation in the exponent,
and $K$ can be derived from $K \cdot g^{r L\left(t_{0}, x_{0}\right)}$ available in the enabling block.

$$
g^{r L\left(t_{0}, x_{0}\right)}=\prod_{0 \leq u \leq z+z_{d}}\left(g^{r L\left(t_{0}, \psi_{u}\right)}\right)^{\lambda_{u}\left(x_{0}\right)}=g^{r \sum_{u=0}^{z+z_{d}} L\left(t_{0}, \psi_{u}\right) \lambda_{u}\left(x_{0}\right)}
$$

where $\lambda_{u}(x)=\prod_{0 \leq v \leq z+z_{d}, v \neq u} \frac{x-\psi_{v}}{\psi_{u}-\psi_{v}}$ and $\psi_{u}=x_{u}\left(t_{0}\right)$ for a real
user $u$, but $\psi_{u}$ is a random value for a dummy "user".

## Why the Attack Does Not Work

## a malicious user $u^{\prime}$

this time has to cope with equation system in the exponent, with unknown $L(t, x), Q_{u}(t), S(t)$

$$
\left\{\begin{array}{ccccc}
g^{L\left(t_{1}, x_{u^{\prime}}\left(t_{1}\right)\right)} & = & g^{P_{u^{\prime}}\left(t_{1}\right)+Q_{u^{\prime}}\left(t_{1}\right) S\left(t_{1}\right)} & = & ? \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
g^{L\left(t_{n}, x_{u^{\prime}}\left(t_{n}\right)\right)} & = & g^{P_{u^{\prime}}\left(t_{n}\right)+Q_{u^{\prime}}\left(t_{n}\right) S\left(t_{n}\right)} & = & ?
\end{array}\right.
$$

$u^{\prime}$ does not know the values "?", from headers he knows only $g^{r L\left(t_{i}, x_{u^{\prime}}\left(t_{i}\right)\right)}$, where $r$ is random for each new header.

## Why the Attack Does Not Work

## a malicious user $u^{\prime}$

this time has to cope with equation system in the exponent, with unknown $L(t, x), Q_{u}(t), S(t)$

$$
\left\{\begin{array}{cccc}
g^{L\left(t_{1}, x_{u^{\prime}}\left(t_{1}\right)\right)} & = & g^{P_{u^{\prime}}\left(t_{1}\right)+Q_{u^{\prime}}\left(t_{1}\right) S\left(t_{1}\right)} & = \\
\vdots & \vdots & \vdots & \vdots \\
g^{L\left(t_{n}, x_{u^{\prime}}\left(t_{n}\right)\right)} & = & g^{P_{u^{\prime}}\left(t_{n}\right)+Q_{u^{\prime}}\left(t_{n}\right) S\left(t_{n}\right)} & =
\end{array} ?\right.
$$

$u^{\prime}$ does not know the values "?", from headers he knows only $g^{r L\left(t_{i}, x_{u^{\prime}}\left(t_{i}\right)\right)}$, where $r$ is random for each new header.

Getting any of the $L(t, x), Q_{u}(t), S(t)$ for such a system is a hard problem.

## Security of the Scheme

- Values $r \cdot S\left(t_{0}\right)$ are present in the header, where $r$ and $t_{0}$ are freshly generated for each new header.


## Security of the Scheme

- Values $r \cdot S\left(t_{0}\right)$ are present in the header, where $r$ and $t_{0}$ are freshly generated for each new header.
- $r$ and $S\left(t_{0}\right)$ mask each other.


## Security of the Scheme

- Values $r \cdot S\left(t_{0}\right)$ are present in the header, where $r$ and $t_{0}$ are freshly generated for each new header.
- $r$ and $S\left(t_{0}\right)$ mask each other.
- If the values could be separated, the system would be broken.
- ...

Further details in the paper.

## Thank you for your attention!

A Naive Approach
The Init Procedure
The Registration Procedure
The Encoding Procedure
The Decryption Procedure

A Naive Approach
The Init Procedure
The Registration Procedure
The Encoding Procedure
The Decryption Procedure

- $u^{\prime}$ knows $P_{u^{\prime}}$, hence he might compose a system

$$
\left\{\begin{array}{ccc}
L\left(t_{1}, x_{u^{\prime}}\left(t_{1}\right)\right)-Q_{u^{\prime}}\left(t_{1}\right) S\left(t_{1}\right) & = & P_{u^{\prime}}\left(t_{1}\right) \\
\vdots & \vdots & \vdots \\
L\left(t_{n}, x_{u^{\prime}}\left(t_{n}\right)\right)-Q_{u^{\prime}}\left(t_{n}\right) S\left(t_{n}\right) & = & P_{u^{\prime}}\left(t_{n}\right)
\end{array}\right.
$$

- $u^{\prime}$ knows $P_{u^{\prime}}$, hence he might compose a system

$$
\left\{\begin{array}{ccc}
L\left(t_{1}, x_{u^{\prime}}\left(t_{1}\right)\right)-Q_{u^{\prime}}\left(t_{1}\right) S\left(t_{1}\right) & = & P_{u^{\prime}}\left(t_{1}\right) \\
\vdots & \vdots & \vdots \\
L\left(t_{n}, x_{u^{\prime}}\left(t_{n}\right)\right)-Q_{u^{\prime}}\left(t_{n}\right) S\left(t_{n}\right) & = & P_{u^{\prime}}\left(t_{n}\right)
\end{array}\right.
$$

- Denote by $L_{u}(t)$ the polynomial

$$
L\left(t, x_{u}(t)\right)=\sum_{j=0}^{\alpha+\left(z+z_{d}\right) \beta} c_{u, j} t^{j}
$$

- $u^{\prime}$ knows $P_{u^{\prime}}$, hence he might compose a system

$$
\left\{\begin{array}{ccc}
L\left(t_{1}, x_{u^{\prime}}\left(t_{1}\right)\right)-Q_{u^{\prime}}\left(t_{1}\right) S\left(t_{1}\right) & = & P_{u^{\prime}}\left(t_{1}\right) \\
\vdots & \vdots & \vdots \\
L\left(t_{n}, x_{u^{\prime}}\left(t_{n}\right)\right)-Q_{u^{\prime}}\left(t_{n}\right) S\left(t_{n}\right) & = & P_{u^{\prime}}\left(t_{n}\right)
\end{array}\right.
$$

- Denote by $L_{u}(t)$ the polynomial

$$
L\left(t, x_{u}(t)\right)=\sum_{j=0}^{\alpha+\left(z+z_{d}\right) \beta} c_{u, j} t^{j}
$$

- Hence $u^{\prime}$ might "calculate" coefficients of the polynomial $L_{u^{\prime}}(t)-Q_{u^{\prime}}(t) S(t)$


## Why the attack does not work

- $u^{\prime}$ knows $P_{u^{\prime}}$, hence he might compose a system

$$
\left\{\begin{array}{ccc}
L\left(t_{1}, x_{u^{\prime}}\left(t_{1}\right)\right)-Q_{u^{\prime}}\left(t_{1}\right) S\left(t_{1}\right) & = & P_{u^{\prime}}\left(t_{1}\right) \\
\vdots & \vdots & \vdots \\
L\left(t_{n}, x_{u^{\prime}}\left(t_{n}\right)\right)-Q_{u^{\prime}}\left(t_{n}\right) S\left(t_{n}\right) & = & P_{u^{\prime}}\left(t_{n}\right) .
\end{array}\right.
$$

- Denote by $L_{u}(t)$ the polynomial

$$
L\left(t, x_{u}(t)\right)=\sum_{j=0}^{\alpha+\left(z+z_{d}\right) \beta} c_{u, j} t^{j} .
$$

- Hence $u^{\prime}$ might "calculate" coefficients of the polynomial

$$
\begin{aligned}
& L_{u^{\prime}}(t)-Q_{u^{\prime}}(t) S(t) \\
& =\left[L_{u^{\prime}}(t)+\alpha(t) S(t)\right]-\left[Q_{u^{\prime}}(t)-\alpha(t)\right] S(t)
\end{aligned}
$$

## Why the attack does not work

- $u^{\prime}$ knows $P_{u^{\prime}}$, hence he might compose a system

$$
\left\{\begin{array}{ccc}
L\left(t_{1}, x_{u^{\prime}}\left(t_{1}\right)\right)-Q_{u^{\prime}}\left(t_{1}\right) S\left(t_{1}\right) & = & P_{u^{\prime}}\left(t_{1}\right) \\
\vdots & \vdots & \vdots \\
L\left(t_{n}, x_{u^{\prime}}\left(t_{n}\right)\right)-Q_{u^{\prime}}\left(t_{n}\right) S\left(t_{n}\right) & = & P_{u^{\prime}}\left(t_{n}\right) .
\end{array}\right.
$$

- Denote by $L_{u}(t)$ the polynomial

$$
L\left(t, x_{u}(t)\right)=\sum_{j=0}^{\alpha+\left(z+z_{d}\right) \beta} c_{u, j} t^{j} .
$$

- Hence $u^{\prime}$ might "calculate" coefficients of the polynomial $L_{u^{\prime}}(t)-Q_{u^{\prime}}(t) S(t)$
$=\left[L_{u^{\prime}}(t)+\alpha(t) S(t)\right]-\left[Q_{u^{\prime}}(t)-\alpha(t)\right] S(t)=P_{u^{\prime}}(t)$.
- $u^{\prime}$ knows $P_{u^{\prime}}$, hence he might compose a system

$$
\left\{\begin{array}{ccc}
L\left(t_{1}, x_{u^{\prime}}\left(t_{1}\right)\right)-Q_{u^{\prime}}\left(t_{1}\right) S\left(t_{1}\right) & = & P_{u^{\prime}}\left(t_{1}\right) \\
\vdots & \vdots & \vdots \\
L\left(t_{n}, x_{u^{\prime}}\left(t_{n}\right)\right)-Q_{u^{\prime}}\left(t_{n}\right) S\left(t_{n}\right) & = & P_{u^{\prime}}\left(t_{n}\right)
\end{array}\right.
$$

- Denote by $L_{u}(t)$ the polynomial $L\left(t, x_{u}(t)\right)=\sum_{j=0}^{\alpha+\left(z+z_{d}\right) \beta} c_{u, j} t^{j}$.
- Hence $u^{\prime}$ might "calculate" coefficients of the polynomial $L_{u^{\prime}}(t)-Q_{u^{\prime}}(t) S(t)$

$$
=\left[L_{u^{\prime}}(t)+\alpha(t) S(t)\right]-\left[Q_{u^{\prime}}(t)-\alpha(t)\right] S(t)=P_{u^{\prime}}(t)
$$

- Note that almost any $\alpha(t)$ such that $\operatorname{deg} \alpha \leq \operatorname{deg} Q_{u^{\prime}}$ does not change the degree of "polynomial" $g^{Q_{u^{\prime}}}$ known to $u^{\prime}$. Hence almost each of the $|p|^{1+\operatorname{deg}} Q_{u^{\prime}}$ possibilities is a right solution for the above system.

