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Z. Gołębiewski et al. Self-stabilizing population of mobile agents



Model & Problem
Algorithm

Analysis

Model

We consider a network:

I consisting of n nodes
I fully connected:

a node can send a message directly to another node

.. and mobile agents in such a network.
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Mobile agent - definition

mobile agent is a unit that can migrate through the system.

activities an agent:
1. can migrate to an arbitrary chosen node,
2. can reproduce itself, i.e. generate its copies at

the node where it resides,
3. can kill other agents or become killed (e.g. by

another agent or the system)
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Time

I Time is divided into synchronous rounds.
I Each round consist of 2 phases:

move phase an agent can migrate to another node,
evolution phase an agent can

1. reproduce or become killed,
2. perform internal tasks
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Application of agent systems

worms an agent is a worm that tries to infect as many
nodes as possible:

I it tries to replicate through the system (but no
more than one worm in a node)

I it tries to behave so that it is hard to catch all
copies of a worm
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Application of agent systems

monitoring agents the agents perform some supervision and
protect a system consisting of many PCs,
they:

I should survive in the system even if a
substantial number of PCs is taken over by
the adversary

I should be hard to remove even if a (malicious)
administrator wants them to switch off for a
moment
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Main goals

Design an algorithm that
I keeps number of agents in the system around pre-defined

level α = α(n),
I agents cannot leave any information in nodes,
I agents can communicate only with the agents residing in

the same node.

Z. Gołębiewski et al. Self-stabilizing population of mobile agents



Model & Problem
Algorithm

Analysis

Previous work

I K. Amin and A. Mikler, Dynamic agent population in
agent-based distance vector routing, ISDA 2002.

I T. White and B. Pagurek and D. Deugo, Management of
Mobile Agent Systems using Social Insect Metaphors,
SRDS 2002.

Similar algorithms of controlling agents population, but:
I agents leave traces at host nodes
I no analytic results, only simulations
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Our Algorithm

Algorithm executed by an agent:

Move: Pick a node uniformly at random; move to this node
(agents’ choices are independent)

Evolution: if (there is exactly one agent in the
node)

then with probability p it creates a new
agent in this node,

else fight!
exactly one of the agents survives
(other agents in this node are killed).
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Intuitions

There are two opposite mechanisms integrated in the protocol:
I if the number of agents is low, then the number of agents is

increasing
(agents replicate, killing occurs rarely since they do not
meet frequently),

I if the number of agents is high, then the number of agents
is reduced
(agents meet frequently, killings outnumber replications)
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Z. Gołębiewski et al. Self-stabilizing population of mobile agents



Model & Problem
Algorithm

Analysis

Combinatorial structures
Multivariate generating functions
Algorithm analysis

Algorithm analysis

The analysis is based on the labeled combinatorial structures
and their exponential multivariate generating functions (EMGF).
They allow us to compute easily:

I the expected number of the number of born and killed
agents in a network, (possible with the ” approach)

I the variance of the number of born and killed agents in a
network - handling with dependencies between agents!
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Basic definitions and notation

I Let Z be the atomic class, i.e. Z = { i1}, and i1 be
a labeled atom of size 1 (an atom corresponds to the
agent).

I The EGF of the atomic class Z is Z (z) = z.
I Let Pk{Z} denote the class of all sets of size k of the

classes Z.
I The EGF of the class Pk{Z} is Pk(z) = 1

k!(Z (z))k .
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Z. Gołębiewski et al. Self-stabilizing population of mobile agents



Model & Problem
Algorithm

Analysis

Combinatorial structures
Multivariate generating functions
Algorithm analysis

Basic definitions and notation

I Let P = ∑k Pk{Z} corresponds to all possible sets of the
labeled atoms.

I The EGF of the class P satisfies

P(z) = ∑
k

Pk(z) = ∑
k

1
k!

(Z (z))k = ∑
k

zk

k!
= ez .
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Basic facts

The key fact concerning multivariate generating functions is that
the moment of order 1 of a parameter χ1 is given by the formula

EP (n)[χ1] =
[zk ]∂u1P(n)(z,1,1)
[zk ]P(n)(z,1,1)

(1)

where [zk ]S(z) extracts the coefficient of zk in the power series
S(z), and ∂u1 := ∂

∂u1
.
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Basic facts

Similarly, the moment of order 2 of a parameter χ1 equals

EP (n)[χ2
1] =

[zk ]∂2
u1

P(n)(z,1,1)
[zk ]P(n)(z,1,1)

+
[zk ]∂u1P(n)(z,1,1)
[zk ]P(n)(z,1,1)

(2)

where ∂2
u1

:= ∂2

∂u2
1
.
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Step 1

I The class P (n) that describes all nodes in a network is
defined as a product of n classes P .

I The EGF of the class P (n) is given by formula
P(n)(z) = (P(z))n.
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Step 2

We define parameters χ1 and χ2.

I χ1 associates the number of nodes with exactly one agent
to an arrangement of agents in the nodes,

I Since z1

1! = z describes the nodes with exactly one agent,
we will multiply it by a formal variable u1 that marks χ1.
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Step 2

I χ2 associates the number of killed agents to an
arrangement of agents in the nodes.

I Since zk

k! describes the node with exactly k agents we will
multiply it by a formal variable uk−1

2 that marks χ2.

I ∑k≥2
uk−1

2 zk

k! describes the nodes with more than one agent.
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Step 3

Therefore we get the following exponential multivariate
generating function (EMGF)

P(n)(z,u1,u2) =

(
1+u1z +

(
∑
k≥2

uk−1
2 zk

k!

))n

= . . .

= (1+u1z +
1
u2

(eu2z −u2z−1))n.
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Number of agents born in a round

Lemma
Let k be the number of agents in a network at the beginning of a
round. Then,

E [χ1] = k

(
1− 1

n

)k−1

(3)

Var[χ1] = k

((
1− 1

n

)k−1

− k

(
1− 1

n

)2(k−1)
)

+
k(k −1)(n−1)(n−2)k−2

nk−1 . (4)
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Number of agents born in a round

Corollary
Let B denote the number of agents born in a round such that
there are k agents in the network immediately before the round.
Then

E [B] = p · k
(

1− 1
n

)k−1

(5)

Var[B] = pk

(
1− 1

n

)k−1

−p2k2
(

1− 1
n

)2k−2

+ p2k(k −1)
(

1− 1
n

)(
1− 2

n

)k−2

. (6)
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Number of agents killed in a round

Lemma
n = the number of nodes in a network,
p = the agents reproduction probability,
k = the number of agents in a network at the beginning of a round,
K = the number of agents killed in a network after the round.
Then

E [K ] = k −n +n

(
1− 1

n

)k

(7)

Var[K ] = n(n−1)
(

1− 2
n

)k

+n

(
1− 1

n

)k

−n2
(

1− 1
n

)2k

.
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Equilibrium condition

Definition
We say that the process considered is in the Equilibrium Point,
when the expected change of the number of agents in a round
equals 0,

i.e. the expected number of agents born in a round is equal to
the expected number of agents killed in a round: E [B] = E [K ].
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Equilibrium condition

Theorem
Let n = the number of nodes in a network,
p = the reproduction probability,
k = the number of agents at the beginning of a round.
Then the Equilibrium Point

p k

(
1− 1

n

)k−1

= k −n +n

(
1− 1

n

)k

(8)

is reached for

k ≈ 2p
1+p

n . (9)
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Equilibrium condition

Corollary
The number of agents at the Equilibrium Point can be
established on any chosen value α ·n, 0 < α < 1 by choosing
p ≈ α

2−α
.
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Experimental results

n = 1000 according to (8) average number
in simulations

p = 0.1 178.46 180
p = 0.25 386.054 385

p = 1 1000.58 1000

Equilibrium Point versus the average number of agents for
n = 1000
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Evolution of the number of agents, an example simulation for n = 1000
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Final Remarks

I the rate of convergence to the Equilibrium Point has not
been covered by the paper,

I computed values of the variances of variables B and K are
quite low– this influences on high rate of convergence.

I Numerical experiments show that the convergence is fast
regardless of the initial situation!
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Thanks for your attention
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