Anonymous Distribution of Broadcast Keys in Ad Hoc Systems

Jacek Cichoń, Łukasz Krzywiecki, Mirosław Kutyłowski, (Wrocław University of Technology) and Paweł Wlaź (Technical University Lublin)

MADNES'2005, Singapore

< ロト (周) (日) (日)

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

Encoded broadcast

Application areas:

- pay TV
- services in 3G telecommunication networks

Features:

- pay for the access time only
- single broadcast channel, all subscribers get the same data

(日) (周) (王) (王)

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

Solutions

- broadcast encrypted with a symmetric key K (session key)
- a subscriber that is logged in obtains K
- without K it is impossible to decode the transmission

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

A new subscriber Alice logs in

- Alice contacts broadcasting system (request for a key + authorisation through a private channel)
- 2 the system responds with a message containing the current key K

イロト イポト イヨト イヨト

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

A subscriber logs off

- the session key K is changed and distributed to the users that remain in the system
- 2 transmission channel:
 - option 1: private channel to each user (costly!)
 - option 2: key update through appropriate messages in the broadcast channel (cheap!)

· □ > · (同 > · (日 > · (日 >)

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

Update scenarios

scenario 1: only a few users leave the system at a time (most literature)

scenario 2: rapid changes

<ロ> (四) (四) (三) (三) (三)

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

Our scenario

- the set of active users changes rapidly (mobility, consumers behavior...)
- it is unpredictable who requests the service and when
- the number of potential users is moderate

イロト イポト イヨト イヨト

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

Communication model

cellular broadcast system:

- the service area divided into cells
- in each cell a base station broadcasts through a channel accessible by all mobile users in this cell
- a single broadcast channel of limited capacity

イロト イポト イヨト イヨト

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

Privacy goals

• the encryption key should not be decodable by unauthorized users

- Alice should not be able to derive what Bob is doing
 regardless whether or not Alice is logged in
- a competition company should not be able to derive any information on the system usage

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

Privacy goals

- the encryption key should not be decodable by unauthorized users
- Alice should not be able to derive what Bob is doing
 - regardless whether or not Alice is logged in
- a competition company should not be able to derive any information on the system usage

· □ > · (同 > · (日 > · (日 >)

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

Privacy goals

- the encryption key should not be decodable by unauthorized users
- Alice should not be able to derive what Bob is doing
 regardless whether or not Alice is logged in
- a competition company should not be able to derive any information on the system usage

(日) (周) (王) (王)

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

Users distribution

- N = the total number of subscribers N is large (e.g. $N \approx 10^8$)
- n = the maximal number of users requesting data in a cell, n is moderate (e.g. $n \approx 10^4$)

· □ > · (同 > · (日 > · (日 >)

Simple solutions Protocol preliminaries Balanced Allocations Properties in practice

application scenario assumptions

Private secrets

- a user A has a secret s(A) shared with the broadcasting system
- some symmetric cryptography for authorization

<ロ> (四) (四) (三) (三) (三)

solution 1 solution 2 lower bound

Simple Solution 1

Goal: Alice, Bob, and Paul should get key K

- transmission encoding a new key K: $E_{s(Alice)}(K), E_{s(Bob)}(K), E_{s(Paul)}(K)$ + test sequence: $E_{K}(date)$
- Paul decrypts the first three ciphertexts with s(Paul);
 Paul obtains K and two junk keys
- Paul decrypts E_K(date) with all keys K identified easily!

solution 1 solution 2 lower bound

Simple Solution 1

Goal: Alice, Bob, and Paul should get key K

- transmission encoding a new key K: $E_{s(Alice)}(K), E_{s(Bob)}(K), E_{s(Paul)}(K)$ + test sequence: $E_{K}(date)$
- Paul decrypts the first three ciphertexts with s(Paul);
 Paul obtains K and two junk keys
- Paul decrypts E_K(date) with all keys K identified easily!

solution 1 solution 2 lower bound

Simple Solution 1

Goal: Alice, Bob, and Paul should get key K

- transmission encoding a new key K: $E_{s(Alice)}(K), E_{s(Bob)}(K), E_{s(Paul)}(K)$ + test sequence: $E_{K}(date)$
- Paul decrypts the first three ciphertexts with s(Paul);
 Paul obtains K and two junk keys
- Paul decrypts E_K(date) with all keys K identified easily!

solution 1 solution 2 lower bound

transmission size for key update - broadcast channel capacity is limited

energy usage: receiving time of a user the receiver consumes energy from batteries of a mobile device, the receiver should be switched off as long as possible

イロト イポト イヨト イヨト

solution 1 solution 2 lower bound

Drawbacks of Solution 1

- high energy usage all ciphertexts must be received (in the worst case)
- a large number of decryptions

solution 1 solution 2 lower bound

Simple Solution 2

- instead of $E_{s(A)}(K)$ transmission contains $A, E_{s(A)}(K)$ or an indexing data determining the location of $E_{s(A)}(K)$
- 2 for privacy: A can be replaced by $H(A, E_{s(A)}(t), t)$ for a hash function H and t = current time

solution 1 solution 2 lower bound

Features of Solution 2

- the number of decryptions = 1
- size of transmission data for keysize 64 example: N = 10.000.000, n = 1000
 - indexing data: $\geq 1000 \cdot \log N \geq 1000 \cdot 23$ bits
 - ciphertexts of the key: $1000 \cdot 64$ bits
 - overhead: increase of transmission size by 36%
- privacy OK

solution 1 solution 2 lower bound

Lower bound

- can we transmit k-bit key to n users with a message of length ≪ n · k?
- lower bound: it is impossible

Lower bound transmission size is at least

$$n \cdot (k - \log n) - (0.5 \log n + 3) - k$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

solution 1 solution 2 lower bound

Proof idea of lower bound

- a transmission and a session key K determine a unique subset of users (which retreive K)
- average transmission length + length of K ≥ log(number of subsets)

イロト イポト イヨト イヨト

design goals Shamir's scheme

- transmission size pprox kn
- small energy cost for mobile users
- full privacy

<ロ> (四) (四) (三) (三) (三)

design goals Shamir's scheme

Tools: solution based on Shamir's secret sharing

• users
$$A_{j_1}$$
, A_{j_2} , ..., A_{j_m}

- q random but known
- let $u_i := H(q, s(A_{j_i})), \quad x_i := H'(q, s(A_{j_i}))$ for $i = 1 \dots, m$,

where H, H' are different hash functions

イロト イポト イヨト イヨト

design goals Shamir's scheme

Solution based on Shamir's secret sharing ...

- build a polynomial f of degree m such that f(0) = K, and f(x_i) = u_i for i ≤ m
- message transmitting K:

f(1), f(2), ..., f(m)

イロト イポト イヨト イヨト

design goals Shamir's scheme

Reconstruction of K

- m+1 points are necessary for reconstruction of f,
- a value of f for one more point needed, apart from $f(1), \ldots, f(m)$.
 - otherwise **no** information on K,
- A_{j_i} uses (x_i, u_i) and $(1, f(1)), \ldots, (m, f(m))$: and Lagrange interpolation for reconstructing f and f(0)

design goals Shamir's scheme

Features of the scheme

- perfect anonymity
- not practical for a large m due to computational effort

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

overview left d

Main idea

- keys are transmitted in buckets corresponding to bins
- each bin is responsible for up to c users
- transmission in a bin is fully anonymous
- in each bin use the Shamir's scheme

overview left d

Problems to solve

- I how to assign the users evenly to the bins?
- I how the user determines its own bin?
- I how to preserve anonymity?

overview left d

Assignment to bins

Parameters:

- *n* the number of users
- B the number of bins (for instance B = n/100)
- *d* a solution parameter
- F a pseudorandom cryptographic function with the range $\{1, \ldots, B/d\}$

· □ > · (同 > · (日 > · (日 >)

overview left d

Assignment to bins - naive solution

Parameters:

- the bin of A determined by $H(A, E_{s(A)}(t))$ (or any other pseudorandom function)
- problem: with high probability there is a bin that will contain many users above the average number

overview left d

Assignment to bins - naive solution

Parameters:

- the bin of A determined by $H(A, E_{s(A)}(t))$ (or any other pseudorandom function)
- problem: with high probability there is a bin that will contain many users above the average number

イロト イポト イヨト イヨト

overview left d

Assignment to bins - left[d] procedure

Choice based on *left*[*d*] procedure by Berthold Vöcking:

- $\bullet\,$ the sender chooses and broadcasts a random number $\rho\,$
- *d* groups of bins: $\{1, ..., B/d\}, \{B/d + 1, ..., 2B/d\}, ...$
- preliminary choice: user A assigned to d bins
- the *i*th bin chosen for A has index:
 (*i*-1) · B/d + F(ρ, A, s(A), *i*)
 (a "random" bin in group *i*)
 these bins can be determined by the sender and by A only

overview left d

Assignment to bins - left[d] procedure

Choice based on *left*[*d*] procedure by Berthold Vöcking:

- $\bullet\,$ the sender chooses and broadcasts a random number $\rho\,$
- d groups of bins: $\{1, \ldots, B/d\}, \{B/d + 1, \ldots, 2B/d\}, \ldots$
- preliminary choice: user A assigned to d bins
- the *i*th bin chosen for A has index:

 (i 1) · B/d + F(ρ, A, s(A), i)
 (a "random" bin in group i)
 these bins can be determined by the sender and by A only

overview left d

Assignment to bins - left[d] procedure

Choice based on *left*[*d*] procedure by Berthold Vöcking:

- $\bullet\,$ the sender chooses and broadcasts a random number $\rho\,$
- d groups of bins: $\{1,\ldots,B/d\},\{B/d+1,\ldots,2B/d\},\ldots$
- preliminary choice: user A assigned to d bins
- the *i*th bin chosen for A has index:

 (i 1) · B/d + F(ρ, A, s(A), i)
 (a "random" bin in group i)
 these bins can be determined by the sender and by A only

overview left d

Assignment to bins - left[d] procedure

Choice based on *left*[*d*] procedure by Berthold Vöcking:

- $\bullet\,$ the sender chooses and broadcasts a random number $\rho\,$
- d groups of bins: $\{1, \ldots, B/d\}, \{B/d + 1, \ldots, 2B/d\}, \ldots$
- preliminary choice: user A assigned to d bins
- the *i*th bin chosen for A has index:
 (*i*-1) · B/d + F(ρ, A, s(A), *i*)
 (a "random" bin in group *i*)
 these bins can be determined by the sender and by A only

overview left d

left[*d*] procedure

- for i = 1, 2, ... the sender uses **one bin** among the bins given by preliminary choice
- the bin chosen for the *i*th user: the bin with the smallest load after assigning bins for users 1 through i-1

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

overview left d

left[*d*] procedure

- for *i* = 1, 2, ... the sender uses **one bin** among the bins given by preliminary choice
- the bin chosen for the *i*th user: the bin with the smallest load after assigning bins for users 1 through i 1

・ロト ・ 同ト ・ ヨト ・ ヨト

overview left d

Properties

• The number of users assigned to some bin exceeds

(γ is some constant) with a probability that can be bounded by a function of *i*

• for $i = O(\frac{\log \log n}{d})$ this probability is O(1/n).

overview left d

Assignment to bins on sender side - summary

- preliminary d bins for a user chosen in a pseudorandom way
- fixing one out of d bins for a user a sequential process

イロト イポト イヨト イヨト

overview left d

Assignment to bins - user's point of view

- preliminary d bins for A computed easily with the secret key s(A),
- determining the bin used by the sender for encoding the key for A – only by testing the keys derived

experiments conclusions

Complexity measures

Energy cost

- each user has to receive $n/B \cdot d$ ciphertexts
- the choice of ciphertexts off-line

Transmission length

• theoretical value:

$$nk \cdot \left(1 + O\left(\frac{B\log\log B}{nd\ln\Phi_d}\right)\right)$$

• the parameters B, d can be chosen freely except that $d \ge 2$.

experiments conclusions

Experimental values for practical parameter choice

- a sequence of 100 experiments
- number of users in a cell 10⁶
- $B = 10^4$

d	n/B	max load	# of bins with load $> n/B$	В
1	100	145	4.764	10.000
2	100	103	3.109	10.000
4	100	101	1.322	10.000
10	100	101	539	10.000

experiments conclusions

Experimental values for practical parameter choice

- a sequence of 100 experiments
- number of users in a cell 10⁴
- $B = 10^2$

d	n/B	max load	# of bins with load $> n/B$	В
1	100	142	54	100
2	100	102	38	100
4	100	101	17	100
10	100	101	8	100

experiments conclusions

Practical values - conclusion

- for d = 4 transmission size is practically $1.01 \cdot nk$
- even if something bad happens the sender may change random parameter ρ

・ロト ・ 同ト ・ ヨト ・ ヨト

experiments conclusions

Conclusion

- substantial savings regarding energy usage with almost *nk* transmission size
- full anonymity

イロト イヨト イヨト イヨト

experiments conclusions

Open problems

- how to expel few users with short transmission, small energy use, and anonymity?
- previous tree based methods provide no privacy

experiments conclusions

thanks for your attention

http://kutylowski.im.pwr.wroc.pl

<ロ> (四) (四) (三) (三) (三)