

SOFSEM 2008

Introduction

Previous wor

Our

## Practical Deniable Encryption

Marek Klonowski, Przemysław Kubiak, Mirosław Kutyłowski

Wrocław University of Technology

Nový Smokovec, January 2008



## Wrocław

SOFSEM 2008

Introduction

Previous wo

contribution





## Motivation

2008

**SOFSEM** 

Introduction

Previous wo

contribution

■ We believe that the adversary cannot decrypt the ciphertext without the private key, but ...



## Motivation

2008

SOFSEM

Introduction

Previous wo

contribution

- We believe that the adversary cannot decrypt the ciphertext without the private key, but ...
- strong adversary has a power to demand a private key (violence, law enforcement procedures).



## Coercion in regular encryption scheme

SOFSEM 2008

Introduction

Our

## Regular encryption

Encryption:

m – message

c = Enc(m, r)

Decryption:

$$m = Dec(c)$$



## Coercion in regular encryption scheme

2008

SOFSEM

Introduction

Our contributio

In case of coercion one can ...

- refuse presenting the key (key is lost or forgotten)
- reveal a fake parameters r' instead r, such that  $Enc(m,r) = Enc(m_f,r')$  and  $m_f$  is "legal".



### Idea of the solution due to Canetti et al.

SOFSEM 2008

Previous work

Our

Our contribution

"Deniable Encryption" due to R.Canetti, C.Dwork, M.Naor, R.Ostovski [CRYPTO 97]

### (Sender) deniable encryption:

$$\phi(\cdot,\cdot,\cdot,\cdot)$$
 – faking algorithm  $r':=\phi(m,m_f,c,r)$  such that  $c=Enc(m_f,r')$ 



### Idea of the solution due to Canetti et al.

SOFSEM 2008

Previous work

Our

"Deniable Encryption" due to R.Canetti, C.Dwork, M.Naor, R.Ostovski [CRYPTO 97]

### (Sender) deniable encryption:

$$\phi(\cdot, \cdot, \cdot, \cdot)$$
 – faking algorithm  $r' := \phi(m, m_f, c, r)$  such that  $c = Enc(m_f, r')$ 

In case of coercion, (sender,reciver) reveals "legal"  $m_f$  and r' instead of "banned" m and r.



SOFSEM 2008

Introduction

Previous work

Our

#### Translucent set

Family  $S_t$  is called *translucent set* if

- $S_t \subset \{0,1\}^t$  and  $|S_t| < 2^{t-k}$ , for sufficiently large k(t).
- It is easy to find random element  $x \in S_t$
- Given  $x \in \{0,1\}^t$  and trapdoor information d it is easy to check if  $x \in S_t$
- Without d it is not computationally feasible to decide if  $x \in S_t$

#### Translucent set: construction

f- one way permutation, B - hard core-predicate

$$S_t = \{x = x_0 | |b_1|| \dots | |b_k \in \{0, 1\}^{s+k} | (\forall_{i \le k}) B(f^{-i}(x_0) = b_i) \}$$



SOFSEM 2008

Previous work

Our

# Encryption

### Encryption:

- $S \in S_t$ , R randomly chosen from $\{0,1\}^t$
- To encrypt 0 (resp. 1) odd (resp. even) number  $i \in 1 \dots n$  is chosen.
- Ciphrertext of single bit consist of i S-elements followed by n - i R-elements.

Decryption: Parity of *S*-elements points if the ciphertext encodes 1 or 0.



SOFSEM 2008

Previous work

i icvious won

Our contribution

#### Opening single bit

Honest Opening: The Sender reveals the real random choices used during encoding.

Dishonest Opening: Parity is changed - single S-element is claimed to be randomly chosen R.



SOFSEM 2008

Previous work

our contribution

### Opening single bit

Honest Opening: The Sender reveals the real random choices used during encoding.

Dishonest Opening: Parity is changed - single S-element is claimed to be randomly chosen R.

- Scheme provides sender-deniability
- More effective modifications of the basic scheme were presented



SOFSEM

## Nested construction based on Canetti et al.'s protocol

Our

contribution

#### Motivation

- Coercer knows that the deniable encryption scheme is used. So the coercer can demand the "true" message.
- Idea: to reveal faked  $m_f$ , on the second demand reveal also "slightly banned"  $m_f$ , but the real message m is hidden in a deeper layer.



### **Nested construction**

SOFSEM 2008

Introduction

Provious work

Our contribution

#### Nested translucent sets

Let t = s + 2k. Represent each  $x \in \{0, 1\}^{t+2k}$  as

$$x = x_0||b_1^{\star}||\dots||b_k^{\star}||b_1||\dots||b_k,$$

where  $x_0 \in \{0,1\}^s$  is followed by 2k bits. Then we define translucent sets as:

$$S_t^{\star} = \{x = x_0 || b_1^{\star} || \dots || b_k^{\star} || b_1 || \dots || b_k | (\forall_i \leq k) B(f^{\star - 1}(x_0) = b_i^{\star}) \}$$

and

$$S_t = \{x_0 | |b_1^{\star} \dots | |b_k^{\star}| |b_1| | \dots | |b_k| (\forall_i \leq k) B(f^{-1}(x_0 | |b_1^{\star} \dots | |b_k^{\star}) = b_i\}$$



### **Nested construction**

SOFSEM 2008

.....

Our contribution

### Russian dolls - like encryption

- at the price of bandwith of the information channel we can embedded more than two layers of deniability,
- hierarchy of "banned" messages- coercer does not know where the bottom is.



## Postponed One-Time Pad

SOFSEM 2008

Introduction

Our contribution

#### Outline

- shared key, provides sender (sender-and-receiver) deniability
- very efficient (size of the ciphertext, computational complexity)
- on principle,can be built on the top of any encryption scheme
- allows to deny *d* consecutive encrypted message



SOFSEM 2008

Previous work

Our contribution

#### **Preliminaries**

#### Global parameters:

- $\blacksquare \mathfrak{R} = \mathbb{F}_{2^{128}}$
- $E: \mathfrak{R} \to \mathfrak{R}$ , encryption scheme
- $a_1, a_2, F(a_1)$  global parameters from  $\mathfrak{R}$

Secret information shared by the sender and the receiver:

- $\blacksquare$   $R: \mathfrak{R} \to \mathfrak{R}$ , random polynomial
- $b \in \mathfrak{R}$



SOFSEM 2008

Introduction

Our contribution

### Encryption

In order to send message  $m_i$  sender computes:

- **11**  $E(m_i)$  regular ciphertext of  $m_i$ ,
- b := R(b),
- 3  $F_i$  straight line determined by  $(a_1, F(a_1)), (b, E(m)),$
- 4 the ciphertext  $F_i(a_2)$  is sent to the receiver.



SOFSEM 2008

Introduction

Our contribution

#### Encryption

In order to send message  $m_i$  sender computes:

- $\mathbf{I}$   $E(m_i)$  regular ciphertext of  $m_i$ ,
- b := R(b),
- 3  $F_i$  straight line determined by  $(a_1, F(a_1)), (b, E(m)),$
- 4 the ciphertext  $F_i(a_2)$  is sent to the receiver.

#### Decryption

Since the receiver can get actual value of b, he can find  $F_i(b)$  and then  $m_i = E^{-1}(F(b))$ 



SOFSEM 2008

Introduction

Our contribution

### Dishonest opening -idea

For any set d of messages  $m_{f,1}, m_{f,2}, \ldots, m_{f,d}$  it is easy to reconstruct a polynomial  $R_f$  such that gives results that are coherent with previously sent values and decryption procedure gives  $m_{f,1}, m_{f,2}, \ldots, m_{f,d}$ .



SOFSEM 2008

Introduction

Our contribution

### Dishonest opening -idea

For any set d of messages  $m_{f,1}, m_{f,2}, \ldots, m_{f,d}$  it is easy to reconstruct a polynomial  $R_f$  such that gives results that are coherent with previously sent values and decryption procedure gives  $m_{f,1}, m_{f,2}, \ldots, m_{f,d}$ .

Details of this scheme are described in the paper



SOFSEM 2008

Introduction

Our contribution

#### Idea

- Scheme perfectly mimics regular ElGamal encryption scheme.
- Sender and receiver share a secret key of regular ElGamal scheme.
- Fake message  $m_f$  must be fixed in advance.
- Board band subliminal channel



SOFSEM 2008

Introduction Previous work

Our contribution

#### Idea

- Scheme perfectly mimics regular ElGamal encryption scheme.
- Sender and receiver share a secret key of regular ElGamal scheme.
- Fake message  $m_f$  must be fixed in advance.
- Board band subliminal channel

#### **Preliminaries**

- Public parameters -0 < x < p-1 is a private key, public key is  $y = g^x$ .
- Sender and receiver share a secret *s* and the receiver reveals his secret key *x* to the sender.



**SOFSEM** 2008

Our contribution

## Encryption

- $k = HASH(s||m_f)$  is computed

$$\alpha := g^k \cdot m$$

$$\alpha := g^k \cdot m,$$
  
$$\beta := (y^k \cdot m^x) \cdot m_f.$$



SOFSEM 2008

Provious work

Our contribution

#### Decryption

Having s and x one can easily retrieve m

$$egin{array}{lll} rac{eta}{lpha^{ extbf{X}}} &= rac{oldsymbol{y}^{ extbf{K}} \cdot oldsymbol{m}^{ extsf{X}} \cdot oldsymbol{m}^{ extsf{f}}}{oldsymbol{g}^{ extbf{K}} \cdot oldsymbol{m}^{ extsf{f}}} &= oldsymbol{m}_f \; . \ & k & := & HASH(oldsymbol{s}||oldsymbol{m}_f) \ oldsymbol{m} & := & eta(oldsymbol{g})^{-k} \end{array}$$

#### Faked decryption

Receiver can reveal x. The attacker can check that this message is in fact a regular, valid ElGamal encryption of the message  $m_f$ 



## Some other ideas

SOFSEM 2008

minoduction

Previous wo

Our contribution

- subliminal channel in other schemes
- embedding covert channel in deniable encryption schems



SOFSEM 2008

Introduction

Previous wor

Our contribution

## THANK YOU FOR YOUR ATTENTION