Synchronization fault cryptanalysis of $A 5 / 1$

M. Gomułkiewicz, M. Kutyłowski, Th. Vierhaus, P. Wlaź

Wrocław University of Technology, Brandenburgische Technische Universität, Lublin University of Technology

4th International
Workshop on Efficient and Experimental Algorithms

- cheap pseudo-random string generator for encryption in GSM
- possible applications:
- lightweight cryptography for weak devices
- sensor networks,
- Bluetooth like
- a component for self-testing circuits of crypto hardware

LFSR -linear shift register

- in a step:
- the rightmost bit = the current output bit,
- all bits move one position to the right,
- the leftmost bit obtained as a linear combination of bits from certain positions

LFSR -linear shift register

- in a step:
- the rightmost bit = the current output bit,
- all bits move one position to the right,
- the leftmost bit obtained as a linear combination of bits from certain positions
- despite a long period it is a very weak cryptographically: breaking by building a system of linear equations

How to make LFSR's stronger?

How to make LFSR's stronger?

- combine the output of a few different LFSR's

How to make LFSR's stronger?

- combine the output of a few different LFSR's
- with XOR as a combining function - again easy to break

How to make LFSR's stronger?

- combine the output of a few different LFSR's
- with XOR as a combining function - again easy to break
- inserting some nonlinear operation

A5/1

- 3 LFSR's
- their output XOR-ed

A5/1

- 3 LFSR's
- their output XOR-ed
- but: one out of three LFSR's might be stopped from shifting at each step

Clocking

- bits at positions 8,10,10, respectively, are considered,
- if an LFSR i has a bit b and the remaining 2 LFSR's have bit $1-b$, then this LFSR is not active at this step

Clocking

- bits at positions 8,10,10, respectively, are considered,
- if an LFSR i has a bit b and the remaining 2 LFSR's have bit $1-b$, then this LFSR is not active at this step

Clocking

- bits at positions $8,10,10$, respectively, are considered,
- if an LFSR i has a bit b and the remaining 2 LFSR's have bit $1-b$, then this LFSR is not active at this step

Clocking

- bits at positions $8,10,10$, respectively, are considered,
- if an LFSR i has a bit b and the remaining 2 LFSR's have bit $1-b$, then this LFSR is not active at this step

Clocking

- bits at positions 8,10,10, respectively, are considered,
- if an LFSR i has a bit b and the remaining 2 LFSR's have bit $1-b$, then this LFSR is not active at this step

Clocking

- bits at positions 8,10,10, respectively, are considered,
- if an LFSR i has a bit b and the remaining 2 LFSR's have bit $1-b$, then this LFSR is not active at this step

Attacks on A5/1

- via switching to a weak A5/2 (GSM specific)
- statistical analysis plus backtracking to the moment when the secret is in the registers
very much dependent on the length of LFSR's and the feedback function

Fault Cryptanalysis

- classical cryptanalysis: only output (and input) considered

Fault Cryptanalysis

- classical cryptanalysis: only output (and input) considered
- fault cryptanalysis - a tamper proof device holding secret keys inside
goal - reconstruct the keys
method - generate faults and analyze the output

Our Attack

we show that the clever choice of shifting rule of A5/1 might be dangerous due to fault attacks

Attack idea

- run a device twice with the same frame number
- once without fault
- once with a fault that prevents one of the LFSR's from shifting

Attack idea

- run a device twice with the same frame number
- once without fault
- once with a fault that prevents one of the LFSR's from shifting
- typically the outputs get completely different from the moment of injecting a fault
- but sometimes it is the same after a certain number of steps
- the reason: accidentally the pattern of moves in the faulty case catches up the correct computation

Re-synchronization -Example

R1

$$
\mathrm{R} 3 \begin{array}{|l|}
\hline * & * & * & \mathbf{0} & * & * & * & & & & & & & & & \\
\hline
\end{array}
$$

R1

Re-synchronization -Example

R1

fault computation:

Re-synchronization -Example

R1

R 3 | |
| :--- |
| | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $\mathbf{0}$ | $*$ | $*$ | $*$ |

R1

Re-synchronization -Example

R1

fault computation: r2 | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $\mathbf{0}$ | $*$ | $*$ | $*$ |
| :--- |

Re-synchronization patterns

- we look for such "catching up" within 5 to 9 steps

Re-synchronization patterns

- we look for such "catching up" within 5 to 9 steps
- it does not occur frequently, but if it occurs we have only a few hundred candidates for blocks consisting of several bits

Re-synchronization patterns

- we look for such "catching up" within 5 to 9 steps
- it does not occur frequently, but if it occurs we have only a few hundred candidates for blocks consisting of several bits
- the patterns of bits causing re-synchronization after k steps are called
re-synchronization patterns of length k or RSPk.

Re-synchronization patterns

- we look for such "catching up" within 5 to 9 steps
- it does not occur frequently, but if it occurs we have only a few hundred candidates for blocks consisting of several bits
- the patterns of bits causing re-synchronization after k steps are called re-synchronization patterns of length k or RSPk.
- there are 30 for RSP5, 112 for RSP6, 480 for RSP7, 2068 for RSP8, and 8992 for RSP9.

Re-synchronization patterns

- we look for such "catching up" within 5 to 9 steps
- it does not occur frequently, but if it occurs we have only a few hundred candidates for blocks consisting of several bits
- the patterns of bits causing re-synchronization after k steps are called re-synchronization patterns of length k or RSPk.
- there are 30 for RSP5, 112 for RSP6, 480 for RSP7, 2068 for RSP8, and 8992 for RSP9.
- chances for re-synchronization of length 5-9 are about 1.5% (assuming independency of bits - and experiments confirm the figure)
- "output re-synchronization" after 5-8 steps gives 90\% chances for re-synchronization after 5-9 steps
M. Gomułkiewicz, M. Kutyłowski, Th. Vierhaus, P. Wlaź

Linear Equations for Patterns - an example

M. Gomułkiewicz, M. Kutyłowski, Th. Vierhaus, P. Wlaž

Linear Equations for Patterns - an example

proper computation: $a_{17}+b_{20}+c_{21}=x_{1}$

M. Gomułkiewicz, M. Kutyłowski, Th. Vierhaus, P. Wlaž

Linear Equations for Patterns - an example

proper computation: $a_{17}+b_{20}+c_{21}=x_{1}, a_{16}+b_{19}+c_{20}=x_{2}$

M. Gomułkiewicz, M. Kutyłowski, Th. Vierhaus, P. Wlaž

Linear Equations for Patterns - an example

proper computation: $a_{17}+b_{20}+c_{21}=x_{1}, a_{16}+b_{19}+c_{20}=x_{2}$, $a_{16}+b_{18}+c_{19}=x_{3}$

M. Gomułkiewicz, M. Kutyłowski, Th. Vierhaus, P. Wlaž

Linear Equations for Patterns - an example

proper computation: $a_{17}+b_{20}+c_{21}=x_{1}, a_{16}+b_{19}+c_{20}=x_{2}$, $a_{16}+b_{18}+c_{19}=x_{3}$
M. Gomulkiewicz, M. Kutylowski, Th. Vierhaus, P. Wlaź

Linear Equations for Patterns - an example

proper computation: $a_{17}+b_{20}+c_{21}=x_{1}, a_{16}+b_{19}+c_{20}=x_{2}$, $a_{16}+b_{18}+c_{19}=x_{3}$
fault computation: $a_{18}+b_{20}+c_{21}=y_{1}$

M. Gomułkiewicz, M. Kutyłowski, Th. Vierhaus, P. Wlaž

Linear Equations for Patterns - an example

proper computation: $a_{17}+b_{20}+c_{21}=x_{1}, a_{16}+b_{19}+c_{20}=x_{2}$, $a_{16}+b_{18}+c_{19}=x_{3}$
fault computation: $a_{18}+b_{20}+c_{21}=y_{1}, a_{17}+b_{19}+c_{20}=y_{2}$

Linear Equations for Patterns - an example

proper computation: $a_{17}+b_{20}+c_{21}=x_{1}, a_{16}+b_{19}+c_{20}=x_{2}$, $a_{16}+b_{18}+c_{19}=x_{3}$
fault computation: $a_{18}+b_{20}+c_{21}=y_{1}, a_{17}+b_{19}+c_{20}=y_{2}$, $a_{16}+b_{18}+c_{19}=y_{3}$

Linear Equations for Patterns - an example

We solve the system (all 5 equations are independent in this case)

$$
\left\{\begin{array}{l}
a_{16}=b_{20}+c_{20}+x_{1}+x_{2}+y_{2} \\
a_{17}=b_{20}+c_{21}+x_{1} \\
a_{18}=b_{20}+c_{21}+y_{1} \\
b_{18}=b_{20}+c_{19}+c_{20}+x_{1}+x_{2}+x_{3}+y_{2} \\
b_{19}=b_{20}+x_{1}+y_{2}
\end{array}\right.
$$

store the solution;

Linear Equations for Patterns - an example

We solve the system (all 5 equations are independent in this case)

$$
\left\{\begin{array}{l}
a_{16}=b_{20}+c_{20}+x_{1}+x_{2}+y_{2} \\
a_{17}=b_{20}+c_{21}+x_{1} \\
a_{18}=b_{20}+c_{21}+y_{1} \\
b_{18}=b_{20}+c_{19}+c_{20}+x_{1}+x_{2}+x_{3}+y_{2} \\
b_{19}=b_{20}+x_{1}+y_{2}
\end{array}\right.
$$

store the solution; after the output is known, we have to guess 4 unknowns, and easily calculate the other 5.

Linear Equations for Patterns

- On average, more than 70\% of patterns are excluded

Linear Equations for Patterns

- On average, more than 70\% of patterns are excluded
- Gains in the number of bits from considering RSP are

RSP\#	5	6	7	8	9
gain	16.93	19.31	21.45	23.63	25.80

Next Steps

- gradually guess the values of unknown bits needed for the clocking mechanism,

Next Steps

- gradually guess the values of unknown bits needed for the clocking mechanism,
- emulate a move of the system,

Next Steps

- gradually guess the values of unknown bits needed for the clocking mechanism,
- emulate a move of the system,
- construct a linear equation with current rightmost bits of the registers and the output bit.

Next Steps

- gradually guess the values of unknown bits needed for the clocking mechanism,
- emulate a move of the system,
- construct a linear equation with current rightmost bits of the registers and the output bit.
- about 2^{34} systems of linear equations to be considered

Remarks and Conclusions

- No matter what is the length of LFSR's we always get some gain - we reduce the number of unknown bits in the LFSRs.

Remarks and Conclusions

- No matter what is the length of LFSR's we always get some gain - we reduce the number of unknown bits in the LFSRs.
- feedback not confined to the values in the same LFSR would make this attack infeasible.

Remarks and Conclusions

- No matter what is the length of LFSR's we always get some gain - we reduce the number of unknown bits in the LFSRs.
- feedback not confined to the values in the same LFSR would make this attack infeasible.
- similar re-synchronization attack when injecting single random faults

Other Models

Marcin Gomułkiewicz, Mirosław Kutyłowski, Paweł Wlaź, Fault Cryptanalysis for Breaking A5/1, to appear in Tatra Mountains Mathematical Publications, 2005

- The attacker can set "continuous" area in the center of one of register to ones in given moment

- only one (fault) output needed
- about $2^{40-1.6 p}$ systems $+400 \cdot 2^{23}$ frame runs on a simulator

Thanks for your attention!

