Fault Cryptanalysis and the Shrinking Generator

Marcin Gomułkiewicz¹ Mirosław Kutyłowski¹ Paweł Wlaź²

1. Wrocław University of Technology

2. Lublin University of Technology

5th International Workshop on Efficient and Experimental Algorithms

イロト イポト イラト イラト

required for a number of purposes:

- stream encryption
- generating random material for security protocols
- hardware solutions:
 - mobile devices with communication capabilities (better security than Bluetooth,...)

・ 同 ト ・ ヨ ト ・ ヨ ト -

simple devices (sensors, ...)

▶ in a step:

- the rightmost bit = the current output bit,
- all bits move one position to the right,
- the leftmost bit obtained as a linear combination of bits from certain positions

イロト イポト イヨト イヨト

- ▶ in a step:
 - the rightmost bit = the current output bit,
 - all bits move one position to the right,
 - the leftmost bit obtained as a linear combination of bits from certain positions

・ロト ・ 同ト ・ ヨト ・ ヨト

 LFSR, although "good enough" in statistical terms, is cryptographically very weak: easily broken by building a system of linear equations

- pseudorandom number generator
- extremely simple design, yet cryptographically strong
- a clever combination of the output of two simple generators (e.g. LFSRs)

Shrinking Generator – Design

- components:
 - input generator A with output a_1, a_2, a_3, \ldots
 - control generator *C* with c_1, c_2, c_3, \ldots
- output of the shrinking generator is composed of those and only those of a_i for which c_i = 1.

イロト イポト イヨト イヨト

Shrinking Generator – Strength

- Many similar architectures proposed (Geffe's generator, stop-and-go, step1-step2)
 all of them turned out to be weak in some sense
- attacks on the shrinking generator:
 - known attacks have complexity exponential in the length of LFSR's used

- Golič, O'Connor, 1994,
- Meier, Staffelbach, 1994, Mihaljevic, 1996,
- Davson, Golič, Simpson, 1998,
- for known feedback of LFSR's
 - Ekdahl, Johansson, Meier, 2003

Fault Cryptanalysis

classical cryptanalysis :

- only output (and input) considered
- mainly computational methods with nonsolid mathematical background

< ロ > < 同 > < 回 > < 回 > .

but sometimes works

Fault Cryptanalysis

classical cryptanalysis :

- only output (and input) considered
- mainly computational methods with nonsolid mathematical background

ロト (得) (手) (手) (

but sometimes works

fault cryptanalysis: a tamper proof device holding secrets inside goal reconstruct the secret key, internal state ... method generate faults and analyze the outputs requirements no proof required that the result is correct – one can simply check through experiments, *but it should work at least in some cases*

Attack 1: Stopping the Control Generator

- stop the control generator for a few cycles
- observe the changes in the output
- guess the control sequence

- 4 同 ト 4 ヨ ト

let's denote:

▶ ...

- $A = a_1 a_2 a_3 \dots$ the input bitstream
- $C = c_1 c_2 c_3 \dots$ the control bitstream
- $Z^0 = z_1^0 z_2^0 z_3^0 \dots$ the output from a correct computation
- ► $Z^1 = z_1^1 z_2^1 z_3^1 \dots$ the output with the control generator held for 1 step
- ► $Z^2 = z_1^2 z_2^2 z_3^2 \dots$ the output with the control generator held for 2 steps

A	a _i	a_{i+1}	a_{i+2}	a_{i+3}	a_{i+4}	a_{i+5}	a_{i+6}
C	1	1	0	1	0	0	1
Z^0	ai	<i>a</i> _{<i>i</i>+1}	a_{i+2}	a _{i+3}	a_{i+4}	a_{i+5}	a _{i+6}
Z^1	<i>a</i> _{i+1}	<i>a</i> _{i+2}	a_{i+3}	a_{i+4}	a_{i+5}	a_{i+6}	a i+7
Z^2	<i>a</i> _{i+2}	<i>a</i> _{i+3}	a_{i+4}	a_{i+5}	a_{i+6}	a_{i+7}	a_{i+8}
Z^3	<i>a</i> _{i+3}	a_{i+4}	a_{i+5}	<i>a</i> _{i+6}	a_{i+7}	a_{i+8}	a_{i+9}

< ロ > < 部 > < き > < き > ...

э

- guess that the number of zeroes between two ones is 0,1,2,..., and check if appropriate bits are equal
- if they are, the guess might be right; if they are not, the guess is incorrect for sure
- algorithm linear in size of its' input data

problem: more equations \Rightarrow less false alarms, but more zeroes \Rightarrow less equations!

イロト イポト イラト イラト

- one can stop the control generator for a while (upper bounded), but the exact duration remains unknown and random
- considered tables cannot be constructed directly (placement of rows is unknown)

・ 同 ト ・ ヨ ト ・ ヨ ト

Data $Z^{\pi(I)}$ (I = 1, 2, ...) that was obtained by stopping the control generator for a number of steps

Aim if we could guess π , we could sort the rows out, and perform the Basic Attack

Question how to retreive π ?

assume that the control sequence starts with 0...011; then if the Z^k and $Z^{k'}$ sequences are consecutive, that is represent consecutive rows for the Basic Attack, then

$$z_2^k = z_1^{k'}$$

if they are not, this equation holds with probability of $\frac{1}{2}$; so, sometimes we can say that some row *cannot* be "the next" after the other

(日本) (日本) (日本)

- Idea let's think of the rows as of vertices in directed graph: an edge from vertex k to k' exists \iff row k' can be next one after k
 - $\pi\,$ unknown permutation is one of the Hamilton's path in the graph defined
- Problem graph is dense, besides finding such paths is NP-complete Solution ...?

(4月) (4日) (4日)

Graph is (too) dense? Then make it sparse!

• if we assume that C starts with 00...011...1 we have

$$z_2^k = z_1^{k'}$$
 and $z_3^k = z_2^{k'}$ and $z_4^k = z_3^{k'}$ and ...

 so the probability of a false alarm exponentially decreases with N

N

イロト イポト イヨト イヨト

- simulations carried out on a regular PC
- calculations last from a split of a second to a couple of hours
- they tend to give at most a few possible candidates, always including the right one checking the candidates is straightforward
- for the interested source code available (unfortunately with comments in Polish)

Attack 2: Destroying the Control Generator

- the control generator is jammed its' output bits are completely unrelated to the correct ones, we consider them random, independent, etc.
- observe the output
- guess the input sequence

・ 同 ト ・ ヨ ト ・ ヨ ト

let's denote:

- $A = a_1 a_2 a_3 \dots$ the input bitstream
- $C^i = c_1^i c_2^i c_3^i \dots$ the *i*th control bitstream
- ► $Z^i = z_1^i z_2^i z_3^i \dots$ output when C^i is the control generator

(日本) (日本) (日本)

(for a while let $C = c_1 c_2 c_3 \dots$ and $Z = z_1 z_2 z_3 \dots$)

▶ if $c_1 = 1$, then $z_1 = a_1$ → probability equals $\frac{1}{2}$

▶ if
$$c_1 = 0$$
 and $c_2 = 1$, then $z_1 = a_2$
→ probability equals $\frac{1}{4}$

▶ ...

 if exactly *i* − 1 of *c*₁, *c*₂,..., *c*_{*j*−1} are 1 and *c*_{*j*} = 1, then *z*_{*i*} = *a*_{*j*}
 → probability equals (^{*j*−1}_{*i*−1}) (¹/₂)^{*j*} (obviously *i* > *j*)

let X_i be the random variable distributed so that

$$\Pr(X_i = j) = \begin{cases} 0, & \text{for } i > j \\ \binom{j-1}{i-1} \left(\frac{1}{2}\right)^j, & \text{for } i \le j \end{cases}$$

then it can be very easily easily shown that

- ► $E[X_i] = 2i$
- ► VAR $[X_i] = 2i$

and not quite that easily that

•
$$\Pr\left(X_k \leq 2k \cdot e^{\sqrt{\frac{-2\log p}{k}}}\right) \geq 1 - p$$

...so as we can see our probability distribution behaves nicely

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

assume we have made N independent experiments, gaining N outputs: $Z^1, Z^2, \dots Z^N$

- in about $\frac{1}{2}N$ cases z_1 was a_1 ,
- in about $\frac{1}{4}N$ cases z_1 was a_2 ,
- ▶ ...
- in about $\binom{j-1}{j-1} \left(\frac{1}{2}\right)^j N$ cases z_i was a_j

・ 同 ト ・ ヨ ト ・ ヨ ト -

Equations, equations...

$$\begin{cases} Np_{1,1}a_1 + Np_{1,2}a_2 + Np_{1,3}a_3 + Np_{1,4}a_4 + \dots \approx \sum_{\substack{k=1 \ N}}^N z_1^k \\ Np_{2,2}a_2 + Np_{2,3}a_3 + Np_{2,4}a_4 + \dots \approx \sum_{\substack{k=1 \ N}}^N z_2^k \\ Np_{3,3}a_3 + Np_{3,4}a_4 + \dots \approx \sum_{\substack{k=1 \ N}}^N z_3^k \\ Np_{4,4}a_4 + \dots \approx \sum_{\substack{k=1 \ N}}^N z_4^k \\ \dots \approx \dots \end{cases}$$

イロト イポト イヨト イヨト

э

- we can write as much equations as we wish
- but there is always infinitely many variables!

...so we have to cut somewhere

- 4 同 ト 4 ヨ ト

- we can assume that some p_{i,j} are so small that can be neglected
- consider only partial equations' systems
- do best effort to solve it (hopefully faster than via exhaustive search)

イロト イポト イヨト イヨト

The Algorithm

- we choose a number of equations w
- For each k = 1,2,..., w we choose v_k: the number of variables considered as important:

$$\Pr(X_k \leq v_k) \geq 1 - p$$

for some arbitrarily chosen parameter p

we consider a set of equations:

$$N\sum_{i=1}^{v_k} p_{k,i} a_i = \sum_{l=1}^N z_1^l$$

< ロ > < 同 > < 回 > < 回 > .

In the interesting setups it is true that 2k ≤ v_k ≤ 3k → still more variables than equations

- ▶ for the first equation (k = 1) we consider all possible values of variables
- for the next equations we consider only variables not considered before
- we keep some pool of the "best" solutions
- "goodness" of a solution s is measured by some reasonable metric:

$$M(s,i) = \sum_{m=1}^{i} \left(\frac{1}{n} \sum_{j=1}^{n} z_{m}^{j} - \sum_{j=m}^{v_{m}} p_{m,j} x_{j} \right)^{2}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- simulations carried out on a regular PC
- calculations last from a couple of seconds to a couple of hours
- results are generally not 100% accurate, but they significantly correlate (58% – 95%) to the original values
- for the interested source code available (unfortunately with comments in Polish)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- security of simple cryptodevices is still a problem
- design methods inherited from "software"-cryptography may do harm for hardware cryptography example: avelanche property makes the second attack possible

イロト イポト イヨト イヨト

Thanks for your attention!

イロト イポト イヨト イヨト