#### Anonymous communication with on-line and off-line onion encoding

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski

#### Wrocław University of Technology, SOFSEM'2005

Partially supported by the EU within the 6th Framework Programme under contract 001907 (DELIS)

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト イボト イラト イラト

Anonymity Existing Solutions Existing problems

# **Privacy in Communication Systems**

- messages can be kept secret
- reliable authentication
- how to hide that two parties are communicating??

< □ > < 同 > < 回 > < 回 >

Anonymity Existing Solutions Existing problems

## **Need of Anonymity in Communication**

- a health insurance company discovers that an applicant has sought information on specific heart diseases – his application get rejected!
- buying a product the seller knows where I have checked the prices.
  - the game becomes unfair!

< □ > < 同 > < 回 > < 回 >

Anonymity Existing Solutions Existing problems

#### **Design Goals**

provable security

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト 不同ト イヨト イヨト

Anonymity Existing Solutions Existing problems

### **Design Goals**

- provable security
- scalability
- layered approach consistent with communication systems architecture

< □ > < 同 > < 回 > < 回 >

э

Anonymity Existing Solutions Existing problems

### **Design Goals**

- provable security
- scalability
- layered approach consistent with communication systems architecture
- adaptiveness to network load
- the end-user machine has limited knowledge of the network

< □ > < 同 > < 回 > < 回 >

Anonymity Existing Solutions Existing problems

### **Design Goals**

- provable security
- scalability
- layered approach consistent with communication systems architecture
- adaptiveness to network load
- the end-user machine has limited knowledge of the network
- resistance against dynamic attacks (not only observing the network but also inserting/deleting messages)

イロト イポト イヨト イヨト

Anonymity Existing Solutions Existing problems

### **Naive or Local Network Solutions**

all-to-all: send the encrypted message to all participants, communication overhead!

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

< □ > < 同 > < 回 > < 回 >

Anonymity Existing Solutions Existing problems

### **Naive or Local Network Solutions**

- all-to-all: send the encrypted message to all participants, communication overhead!
- token ring: encoded messages go around the ring communication delay!

< □ > < 同 > < 回 > < 回 >

Anonymity Existing Solutions Existing problems

# **Onion Encoding**

т

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

・ロト ・個ト ・モト ・モト

Anonymity Existing Solutions Existing problems

# **Onion Encoding**

m

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト 不同ト イヨト イヨト

Anonymity Existing Solutions Existing problems

# **Onion Encoding**



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

・ロト ・回ト ・ヨト ・ヨト

Anonymity Existing Solutions Existing problems

# **Onion Encoding**



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

・ロト ・回ト ・ヨト ・ヨト

Anonymity Existing Solutions Existing problems

# **Onion Encoding**



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト 不同ト イヨト イヨト

Anonymity Existing Solutions Existing problems

# **Onion Encoding**



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト 不同ト イヨト イヨト

Anonymity Existing Solutions Existing problems

# **Onion Encoding**



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト 不同ト イヨト イヨト

Anonymity Existing Solutions Existing problems

# **Onion decryption**



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト イヨト イヨト イヨト

Anonymity Existing Solutions Existing problems

# **Onion decryption**



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト イヨト イヨト イヨト

Anonymity Existing Solutions Existing problems

# **Onion decryption**



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト イヨト イヨト イヨト

Anonymity Existing Solutions Existing problems

# **Onion decryption**



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト 不同ト イヨト イヨト

Anonymity Existing Solutions Existing problems

# **Onion decryption**



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト 不同ト イヨト イヨト

Anonymity Existing Solutions Existing problems

# **Onion decryption**

m

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト イヨト イヨト イヨト

Anonymity Existing Solutions Existing problems

# **Onion decryption**

т

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト 不同ト イヨト イヨト

Anonymity Existing Solutions Existing problems

#### **Route of an Onion**

single onion

0 <sup>B</sup>

・ロト ・個ト ・モト・・モトー

3



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

Anonymity Existing Solutions Existing problems

#### **Route of an Onion**

single onion

О <sup>В</sup>

・ロト ・個ト ・モト・・モトー



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

Anonymity Existing Solutions Existing problems

#### **Route of an Onion**

single onion

0 <sup>B</sup>

・ロト ・個ト ・モト・・モトー

3

 $A_{\bigcirc}$ 

Anonymity Existing Solutions Existing problems

#### **Route of an Onion**

single onion

 $O^{B}$ 

・ロト ・個ト ・モト・・モト

3

 $A_{\bigcirc}$ 

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

Anonymity Existing Solutions Existing problems

#### **Route of an Onion**

single onion

 $O^B$ 

イロト 不同ト イヨト イヨト



Anonymity Existing Solutions Existing problems

#### **Route of an Onion**



イロト イヨト イヨト イヨト

Anonymity Existing Solutions Existing problems

#### **Route of an Onion**



イロト イヨト イヨト イヨト

Anonymity Existing Solutions Existing problems

#### **Route of an Onion**



イロト イヨト イヨト イヨト

Anonymity Existing Solutions Existing problems

### **Classical Onions**

If A wants send a message m to server B

• A chooses at random  $\lambda$  intermediate nodes  $J_1, \ldots, J_{\lambda}$ ;

< □ > < 同 > < 回 > < 回 >

э

Anonymity Existing Solutions Existing problems

### **Classical Onions**

If A wants send a message m to server B

- A chooses at random  $\lambda$  intermediate nodes  $J_1, \ldots, J_{\lambda}$ ;
- A creates an onion:
  - 0 :=

 $Enc_B(m)$ 

イロト イポト イヨト イヨト

-

Anonymity Existing Solutions Existing problems

### **Classical Onions**

If A wants send a message m to server B

- A chooses at random  $\lambda$  intermediate nodes  $J_1, \ldots, J_{\lambda}$ ;
- A creates an onion:

O :=

 $\operatorname{Enc}_{J_{\lambda}}(\operatorname{Enc}_{B}(m), B)$ 

イロト 不得下 不良下 不良下

-

Anonymity Existing Solutions Existing problems

### **Classical Onions**

If A wants send a message m to server B

- A chooses at random  $\lambda$  intermediate nodes  $J_1, \ldots, J_{\lambda}$ ;
- A creates an onion:
  - O :=

$$\mathsf{Enc}_{J_{\lambda-1}}(\mathsf{Enc}_{J_{\lambda}}(\mathsf{Enc}_{B}(m),B),J_{\lambda})$$

イロト イポト イヨト イヨト

-

Anonymity Existing Solutions Existing problems

### **Classical Onions**

If A wants send a message m to server B

- A chooses at random  $\lambda$  intermediate nodes  $J_1, \ldots, J_{\lambda}$ ;
- A creates an onion:

 $O := \\ \mathsf{Enc}_{J_1}(\dots(\mathsf{Enc}_{J_{\lambda-1}}(\mathsf{Enc}_{J_{\lambda}}(\mathsf{Enc}_{B}(m),B),J_{\lambda}),J_{\lambda-1})\dots,J_2) \ .$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○
Anonymity Existing Solutions Existing problems

### **Processing an Onion**

If A wants send a message m encrypted as O to server B

A sends onion O to J<sub>1</sub>

Anonymity Existing Solutions Existing problems

### **Processing an Onion**

If A wants send a message m encrypted as O to server B

- A sends onion O to J<sub>1</sub>
- $J_1$  decrypts O and obtains some  $(O', J_2)$

Anonymity Existing Solutions Existing problems

### **Processing an Onion**

If A wants send a message m encrypted as O to server B

- A sends onion O to J<sub>1</sub>
- $J_1$  decrypts O and obtains some  $(O', J_2)$
- $J_1$  sends O' to  $J_2$

Anonymity Existing Solutions Existing problems

### **Processing an Onion**

If A wants send a message m encrypted as O to server B

- A sends onion O to J<sub>1</sub>
- $J_1$  decrypts O and obtains some  $(O', J_2)$
- ► J<sub>1</sub> sends O' to J<sub>2</sub>
- ► J<sub>2</sub> decrypts ..
- $J_2$  sends .. to  $J_3$

イロト イポト イヨト イヨト

Anonymity Existing Solutions Existing problems

### **Processing an Onion**

If A wants send a message m encrypted as O to server B

- A sends onion O to J<sub>1</sub>
- $J_1$  decrypts O and obtains some  $(O', J_2)$
- ► J<sub>1</sub> sends O' to J<sub>2</sub>
- ► J<sub>2</sub> decrypts ..
- $\blacktriangleright$  J<sub>2</sub> sends .. to J<sub>3</sub>
- ▶ ...

イロト イ理ト イヨト イヨト

-

Anonymity Existing Solutions Existing problems

### **Onions at Work**



・ロト ・個ト ・モト ・モト

Anonymity Existing Solutions Existing problems

### **Onions at Work**



・ロト ・個ト ・モト ・モト

Anonymity Existing Solutions Existing problems

### **Onions at Work**



・ロト ・ ア・ ・ ヨト ・ ヨト

Anonymity Existing Solutions Existing problems

### **Onions at Work**



・ロト ・ ア・ ・ ヨト ・ ヨト

Anonymity Existing Solutions Existing problems

### **Onions at Work**



・ロト ・個ト ・モト ・モト

Anonymity Existing Solutions Existing problems

### **Onions at Work**



・ロト ・個ト ・モト ・モト

Anonymity Existing Solutions Existing problems

### **Onions at Work**



・ロト ・個ト ・モト ・モト

Anonymity Existing Solutions Existing problems

### **Onions at Work**



・ロト ・個ト ・モト ・モト

Anonymity Existing Solutions Existing problems

### **Onions at Work**



#### destination of the message starting at A?

< □ > < 同 > < 回 > < 回 >

Introduction Anon New approach Existi Conclusions Existi

Anonymity Existing Solutions Existing problems

### **Disadvantages – Repetitive Attack**

an adversary re-sends the same onion



<ロト (同下)(同下)(日下)(日)

Introduction Ano New approach Exis Conclusions Exis

#### Anonymity Existing Solutions Existing problems

### **Disadvantages – Repetitive Attack**

an adversary re-sends the same onion



Introduction And New approach Exis Conclusions Exis

Anonymity Existing Solutions Existing problems

### **Disadvantages – Repetitive Attack**

an adversary re-sends the same onion



Universal Re-encryption URE-Onions Online Merge Onions

### **Problem Solution: Universal Re-Encryption**

technique due to P. Golle, M. Jakobsson, A. Juels, P. Syverson

- ciphertext obtained with a public key of recipient Alice but everybody can re-code it without knowing the public key of Alice or her identity
- any connection between a ciphertext before and after re-coding undetectable by a third party
- perfect tool for an anonymous re-mailer, ...

イロト イボト イラト イラト

Universal Re-encryption URE-Onions Online Merge Onions

### **URE** setup

- q prime, G a group of rank q with hard discrete logarithm problem
- ▶ g generator of G,
- x < q private key of Alice</p>
- $y = g^x$  public key of Alice

イロト イポト イヨト イヨト

-

Universal Re-encryption URE-Onions Online Merge Onions

### **URE Ciphertexts**

Encryption:

 $k_0, k_1$  - random

A ciphertext of *m*:

$$(\alpha_0,\beta_0;\alpha_1,\beta_1):=\left(m\cdot y^{k_0},g^{k_0};y^{k_1},g^{k_1}
ight)$$

・ロト ・ ア・ ・ ヨト ・ ヨト

Universal Re-encryption URE-Onions Online Merge Onions

### **URE Ciphertexts**

**Encryption:**  $k_0$ ,  $k_1$  - random

A ciphertext of *m*:

$$(\alpha_0, \beta_0; \alpha_1, \beta_1) := (m \cdot y^{k_0}, g^{k_0}; y^{k_1}, g^{k_1})$$

### **Re-encryption:**

 $k'_0$ ,  $k'_1$  - random The message after re-encryption:

$$\begin{aligned} & \left( \alpha_0 \cdot \alpha_1^{k'_0}, \beta_0 \cdot \beta_1^{k'_0}; \alpha_1^{k'_1}, \beta_1^{k'_1} \right) \\ &= \left( m \cdot y^{k_0 + k_1 \cdot k'_0}, g^{k_0 + k_1 \cdot k'_0}; y^{k_1 \cdot k'_1}, g^{k_1 \cdot k'_1} \right) \end{aligned}$$

Universal Re-encryption URE-Onions Online Merge Onions

### Decryption

 $(\alpha_0, \beta_0; \alpha_1, \beta_1)$ Like for ElGamal:

$$m := \frac{\alpha_0}{\beta_0^x}$$
$$m' := \frac{\alpha_1}{\beta_1^x}$$

A message *m* is accepted  $\Leftrightarrow m' = 1$ 

< □ > < 同 > < 回 > < 回 >

э

### **URE-Onions**



- an URE-onion consists of  $\lambda$  blocks
- a block = URE ciphertext

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

< □ > < 同 > < 回 > < 回 >

### **URE-Onions**



- an URE-onion consists of λ blocks
- a block = URE ciphertext
- encoded plaintexts:  $J_2, J_3, \dots, J_\lambda, m$
- advantage: each block can be re-encrypted while processing at a server repetitions get undetected!

・ロト ・ 同ト ・ ヨト ・ ヨト

### **URE-Onions - Partial Decryption**

#### Goal: enforce processing along the path

- $y_1, \ldots, y_{\lambda}$  = public keys of  $J_1, \ldots, J_{\lambda}$
- ciphertext of  $J_i$  encoded with the public key  $y_1 \cdot y_2 \cdot \ldots \cdot y_{i-1}$ :

$$(J_i \cdot (y_1 \cdot y_2 \cdot \ldots \cdot y_{i-1})^k, g^k, (y_1 \cdot y_2 \cdot \ldots \cdot y_{i-1})^{k'}, g^{k'})$$

イロト イ理ト イヨト イヨト

### **URE-Onions - Partial Decryption**

### Goal: enforce processing along the path

- $y_1, \ldots, y_{\lambda}$  = public keys of  $J_1, \ldots, J_{\lambda}$
- ciphertext of  $J_i$  encoded with the public key  $y_1 \cdot y_2 \cdot \ldots \cdot y_{i-1}$ :

$$(J_i \cdot (y_1 \cdot y_2 \cdot \ldots \cdot y_{i-1})^k, g^k, (y_1 \cdot y_2 \cdot \ldots \cdot y_{i-1})^{k'}, g^{k'})$$

• partial decryption of (a, b, c, d) by  $J_1$ :

$$a:=a/b^{x_1}, \quad c:=c/d^{x_1}$$

イロト イ押ト イヨト イヨト

### **URE-Onions - Partial Decryption**

#### Goal: enforce processing along the path

- $y_1, \ldots, y_{\lambda}$  = public keys of  $J_1, \ldots, J_{\lambda}$
- ciphertext of  $J_i$  with the public key  $y_1 \cdot y_2 \cdot \ldots \cdot y_{i-1}$ :

$$(J_i \cdot (\mathbf{y_1} \cdot \mathbf{y_2} \cdot \ldots \cdot \mathbf{y_{i-1}})^k, g^k, (\mathbf{y_1} \cdot \mathbf{y_2} \cdot \ldots \cdot \mathbf{y_{i-1}})^{k'}, g^{k'})$$

• partial decryption of (a, b, c, d) by  $J_1$ :

$$a:=a/b^{x_1}, \quad c:=c/d^{x_1}$$

Result:

$$(J_i \cdot (\mathbf{y_2} \cdot \ldots \cdot y_{i-1})^k, g^k, (\mathbf{y_2} \cdot \ldots \cdot y_{i-1})^{k'}, g^{k'})$$

Universal Re-encryption URE-Onions Online Merge Onions

### **Processing an Onion**

▶ partial decryption of all blocks ⇒ the next hop address  $J_i$  or *m* is retrieved

Universal Re-encryption URE-Onions Online Merge Onions

### **Processing an Onion**

- ▶ partial decryption of all blocks ⇒ the next hop address  $J_i$  or *m* is retrieved
- re-encryption of all blocks

Universal Re-encryption URE-Onions Online Merge Onions

### **Processing an Onion**

- ▶ partial decryption of all blocks ⇒ the next hop address  $J_i$  or *m* is retrieved
- re-encryption of all blocks
- random permutation of all blocks

Universal Re-encryption URE-Onions Online Merge Onions

### **Processing an Onion**

- ▶ partial decryption of all blocks ⇒ the next hop address  $J_i$  or *m* is retrieved
- re-encryption of all blocks
- random permutation of all blocks
- delivery to J<sub>i</sub> or to the final destination

### **Further Possibilities: Inserting a Ciphertext**

Empty container :

$$(a, b, c, d) = (1 \cdot y^{k_0}, g^{k_0}; y^{k_1}, g^{k_1})$$

Inserting m :

 $a := a \cdot m$ 

Result :

$$(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d})=\left(\boldsymbol{m}\cdot\boldsymbol{y}^{k_0},\boldsymbol{g}^{k_0};\boldsymbol{y}^{k_1},\boldsymbol{g}^{k_1}
ight)$$

< □ > < 同 > < 回 > < 回 >

P

### **Navigators**

#### Navigators $\equiv$ "empty onions"

• 
$$Nav[J_1,...,J_{\lambda}] = O_{y_1,...,y_{\lambda}}(-)$$

イロト イヨト イヨト イヨト

Universal Re-encryption URE-Onions Online Merge Onions

## **Online Merge Onions**

**○B** 

3



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

Universal Re-encryption URE-Onions Online Merge Onions

## **Online Merge Onions**

. S₁



・ロト ・個ト ・モト ・モト

3



Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

Universal Re-encryption URE-Onions Online Merge Onions

# Online Merge Onions

Ś

 $\bigcirc B$ 

イロト 不同ト イヨト イヨト

2

A

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin
Universal Re-encryption URE-Onions Online Merge Onions

B

イロト 不同ト イヨト イヨト

2

# Online Merge Onions

. S₁

 $A_{\sub}$ 

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

 $S_3$ 

Universal Re-encryption URE-Onions Online Merge Onions

 $\mathbf{B}$ 

イロト イヨト イヨト イヨト

2

# **Online Merge Onions**



 $S_3$ 

Universal Re-encryption URE-Onions Online Merge Onions

 $\mathbf{B}$ 

イロト イヨト イヨト イヨト

2

## **Online Merge Onions**



Universal Re-encryption URE-Onions Online Merge Onions

# **Online Merge Onions**



イロト イヨト イヨト イヨト

Universal Re-encryption URE-Onions Online Merge Onions

## **Online Merge Onions**



イロト イヨト イヨト イヨト

Universal Re-encryption URE-Onions Online Merge Onions

## **Online Merge Onions**



イロト イヨト イヨト イヨト

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



< □ > < 同 > < 回 > < 回 >

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



< □ > < 同 > < 回 > < 回 >

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



<ロト (同下)(同下)(日下)(日)

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



< □ > < 同 > < 回 > < 正 > < 正 >

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



<ロト (同下)(日下)(日)

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



< □ > < 同 > < 回 > < 回 >

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



< □ > < 同 > < 回 > < 正 > < 正 >

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



< □ > < 同 > < 回 > < 回 >

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



< □ > < 同 > < 回 > < 回 >

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



< □ > < 同 > < 回 > < 正 > < 正 >

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



<ロト (同下)(日下)(日)

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



< □ > < 同 > < 回 > < 正 > < 正 >

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions**



<ロト (同下)(同下)(日下)(日)

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions - creation**

A has a message *m* for *B*. Then *A*:

chooses at random k servers S<sub>1</sub>, ..., S<sub>k</sub>

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions - creation**

A has a message *m* for *B*. Then *A*:

- chooses at random k servers S<sub>1</sub>, ..., S<sub>k</sub>
- creates a navigator  $N = Nav[S_1, ..., S_k]$

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions - creation**

A has a message *m* for *B*. Then A:

- chooses at random k servers S<sub>1</sub>, ..., S<sub>k</sub>
- creates a navigator  $N = Nav[S_1, ..., S_k]$
- ► inserts message "to B" into N

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions - creation**

A has a message *m* for *B*. Then A:

- chooses at random k servers S<sub>1</sub>, ..., S<sub>k</sub>
- creates a navigator  $N = Nav[S_1, ..., S_k]$
- ▶ inserts message "to B" into N
- creates a ciphertext  $URE_{y_B}(m)$  with  $y_B$ , decryption key of B

イロト イポト イヨト イヨト

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions - creation**

A has a message *m* for *B*. Then *A*:

- chooses at random k servers S<sub>1</sub>, ..., S<sub>k</sub>
- creates a navigator  $N = Nav[S_1, ..., S_k]$
- ▶ inserts message "to B" into N
- creates a ciphertext  $URE_{y_B}(m)$  with  $y_B$ , decryption key of B
- sends to  $S_1$ :

$$Nav[S_1, S_k](to B)$$
,  $URE_{y_B}(m)$ 

イロト 不得下 不同下 不同下

Introduction Universal Re-encryption New approach URE-Onions Conclusions Online Merge Onions

#### **Online Merge Onions – processing**

A message obtained by a server on a path of *m* consists of:

- ►  $Nav[J_i, J_m](toS_j)$  "local navigator" chosen online
- ► URE(Nav[S<sub>j</sub>, S<sub>k</sub>](toB)) ciphertext of the remaining part of the "global navigator"
- $URE_{y_B}(m)$

イロト 不得下 不良下 不良下

#### **Online Merge Onions – processing**

A message obtained by a server on a path of m consists of:

- ►  $Nav[J_i, J_m](toS_j)$  "local navigator" chosen online
- ► URE(Nav[S<sub>j</sub>, S<sub>k</sub>](toB)) ciphertext of the remaining part of the "global navigator"
- $URE_{y_B}(m)$

the *i*th server from the list  $J_1, ..., J_l$  proceeds:

- partial decryption of navigators
- re-encryption
- sending according to the "internal navigator"

イロト (得) (注) (注) (注) つくで

Universal Re-encryption URE-Onions Online Merge Onions

### **Online Merge Onions – processing**

A message obtained by a server on a path of *m* consists of:

- ► Nav[J<sub>i</sub>, J<sub>m</sub>](toS<sub>j</sub>) "local navigator" chosen online
- ► URE(Nav[S<sub>j</sub>, S<sub>k</sub>](toB)) ciphertext of the remaining part of the "global navigator"
- $URE_{y_B}(m)$

the *i*th server from the list  $S_1, ..., S_k$  proceeds:

- retrieves  $Nav[S_{i+1}, S_k]$ ) with its private key
- chooses a local navigator M[J<sub>1</sub>,..., J<sub>l</sub>] and inserts the message "to S<sub>i+1</sub>"
- URE-encrypts  $Nav[S_{i+1}, S_k])$  for this path
- sends to J<sub>1</sub>

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions - repetitive attack**



repetitive attack?

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions - repetitive attack**



repetitive attack?

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions - repetitive attack**



repetitive attack?

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions - repetitive attack**



repetitive attack?

Universal Re-encryption URE-Onions Online Merge Onions

#### **Online Merge Onions - repetitive attack**



repetitive attack?

Universal Re-encryption URE-Onions Online Merge Onions

#### **Further Advantages**

 if different users compose paths from different sets of servers (in the classical approach), then breaking anonymity is possible online onions – the users compose navigators from a fixed stable set of servers

#### **Further Advantages**

- if different users compose paths from different sets of servers (in the classical approach), then breaking anonymity is possible online onions – the users compose navigators from a fixed stable set of servers
- enforcing "vertex mixing" helps to reduce the paths lengths without loosing provable privacy

#### **Further Advantages**

- if different users compose paths from different sets of servers (in the classical approach), then breaking anonymity is possible online onions – the users compose navigators from a fixed stable set of servers
- enforcing "vertex mixing" helps to reduce the paths lengths without loosing provable privacy
- ► adaptiveness: high traffic ⇒ the paths can be shorter reduction of communication overhead

イロト イポト イヨト イヨト

#### **Further Advantages**

- if different users compose paths from different sets of servers (in the classical approach), then breaking anonymity is possible online onions – the users compose navigators from a fixed stable set of servers
- enforcing "vertex mixing" helps to reduce the paths lengths without loosing provable privacy
- ► adaptiveness: high traffic ⇒ the paths can be shorter reduction of communication overhead
- layered architecture
- onions can be prepared in advance

・ロト ・ 同ト ・ ヨト ・ ヨト
Introduction New approach Conclusions

#### Comparison

#### Classical Onions Online Merge Onions

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

・ロト ・個ト ・モト ・モト

Introduction New approach Conclusions

## Comparison

|              | Classical Onions   | Online Merge Onions |
|--------------|--------------------|---------------------|
| message size | $S=O(\lambda+ m )$ | $\approx$ 4S        |

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

イロト イヨト イヨト イヨト

|                        | Classical Onions   | Online Merge Onions |
|------------------------|--------------------|---------------------|
| message size           | $S=O(\lambda+ m )$ | ≈4 <i>S</i>         |
| preprocessing possible | no                 | partially           |

・ロト ・個ト ・モト ・モト

|                        | Classical Onions   | Online Merge Onions |
|------------------------|--------------------|---------------------|
| message size           | $S=O(\lambda+ m )$ | ≈4 <i>S</i>         |
| preprocessing possible | no                 | partially           |

・ロト ・個ト ・モト ・モト

|                        | Classical Onions   | Online Merge Onions  |
|------------------------|--------------------|----------------------|
| message size           | $S=O(\lambda+ m )$ | $\approx$ 4 <i>S</i> |
| preprocessing possible | no                 | partially            |
| messages tracing*      | easy               | hard                 |

・ロト ・個ト ・モト ・モト

|                        | Classical Onions   | Online Merge Onions |
|------------------------|--------------------|---------------------|
| message size           | $S=O(\lambda+ m )$ | ≈4 <i>S</i>         |
| preprocessing possible | no                 | partially           |
| messages tracing*      | easy               | hard                |
| repetitive attack**    | easy               | harder              |

・ロト ・個ト ・モト ・モト

|                        | Classical Onions   | Online Merge Onions |
|------------------------|--------------------|---------------------|
| message size           | $S=O(\lambda+ m )$ | ≈4 <i>S</i>         |
| preprocessing possible | no                 | partially           |
| messages tracing*      | easy               | hard                |
| repetitive attack**    | easy               | harder              |
| traffic change         | —                  | decrease            |

・ロト ・個ト ・モト ・モト

|                           | <b>Classical Onions</b> | Online Merge Onions  |
|---------------------------|-------------------------|----------------------|
| message size              | $S=O(\lambda+ m )$      | $\approx$ 4 <i>S</i> |
| preprocessing possible    | no                      | partially            |
| messages tracing*         | easy                    | hard                 |
| repetitive attack**       | easy                    | harder               |
| traffic change            | _                       | decrease             |
| required knowledge of ne- | full                    | limited              |
| twork topology            |                         |                      |

・ロト ・個ト ・モト ・モト

|                           | <b>Classical Onions</b> | Online Merge Onions  |
|---------------------------|-------------------------|----------------------|
| message size              | $S=O(\lambda+ m )$      | $\approx$ 4 <i>S</i> |
| preprocessing possible    | no                      | partially            |
| messages tracing*         | easy                    | hard                 |
| repetitive attack**       | easy                    | harder               |
| traffic change            | _                       | decrease             |
| required knowledge of ne- | full                    | limited              |
| twork topology            |                         |                      |
| traffic adaptiveness      | no                      | yes                  |

Marek Klonowski, Mirosław Kutyłowski, Filip Zagórski Anonymous communication with on-line and off-line onion encodin

・ロト ・個ト ・モト ・モト

Introduction New approach Conclusions

#### Thank you for attention!

イロト イヨト イヨト イヨト