### Communication Complexity of Minimum Spanning Tree Problem

Mirek Kutyłowski

M.Adler, W. Dittrich, B. Juurlink, I. Rieping joint work with

## Computational model

- the system consists of many processors
- input data is distributed between processors
- the processors are communicating via point-to-point messages
- no assumptions on
- computational powersynchronization
- obliviousness

:

Point-to-point messages is not a serious restriction, since

- shared memory cell simulated by a processor
- read operation = read request + message with the value

# Problems with defining communication volume

naive: the number of message bits sent

for some models ok, but:

there are tricky ways of transmitting information without transmitting message bits

### Example 1

### Saving bits while writing

- PRAM, processor P knows  $k \in \{1, \dots n\}$
- memory cells  $M_1, \ldots, M_n$  are initially empty
- P writes a 1 into  $M_k$

## Communication volume=???

- k may be determined from the contents of memory
- only 1 message bit sent !!!

### Example 2

### Saving bits while reading

- $M_k$  stores 1, the rest is empty
- for  $i \leq n$ , processor  $P_i$  reads from  $M_i$
- processor  $P_k$  gets the full information on k, the rest only a partial information
- the total number of message bits retrieved = 1

### Example 3

## Bits saved using synchronous clock

- $P_1$  and  $P_2$  have a common clock
- $P_1$  has to sent  $P_2$  a message  $m \leq n$
- $P_1$  waits until a moment t such that  $t = m \mod n$  and sends a single bit to  $P_2$
- $P_2$  receives the 1 before the change on the clock
- the total number of message bits transmitted = 1!

# Definition - encoding communication

- let A be an algorithm on a multiprocessor system
- Definition:

the rest of the world on input xstring s encodes communication between processor P and

 $\exists$ 

be computed from s and a description of Athe whole communication from the point of view of P may

- information retrieved from s describes everything: timing, addresses, messages, ...
- input x has **not** been used!

# Definition - communication volume

communication volume at processor P during execution of algorithm A is at least k

1

the world,  $\forall$  encoding scheme for the communication between P and the rest of

cessor P on x has length  $\geq k$  $\exists$  an input x such that the code describing the communication at pro-

## Vector minimum problem

#### Task:

- given n sets  $X_1, \ldots, X_n$

each  $X_i$  consists of p keys,  $x_{i1}, \ldots x_{ip}$ 

goal: compute  $\min(X_1), \min(X_2), \ldots, \min(X_n)$ 

### Allocation of input data:

- there are p processors  $P_1, \ldots, P_p$
- $\forall j \colon P_j \text{ holds the numbers } x_{1j}, \ldots, x_{nj} \text{ (one number from each } X_i)$

## Main technical theorem

**Input:** vector minimum problem, where each of n sets  $X_i$  consists of k-bit numbers and the number of processors is p

#### • Claim 1:

for any deterministic algorithm solving this problem,  $\exists$  an input that requires total communication volume  $\Omega(npk)$ .

#### Claim 2:

 $\Omega(npk)$ . for any randomized algorithm that always answers correctly, I an input where the expected communication volume is

## Comments on theorem

- it is against intuition:
- compare the most significant bits and many candidates of minimum are gone!
- tricks with computations within groups

:

- well, it usually works, but not always!
- Theorem says: no randomization can help!!!

### Proof headlines

- analysis of deterministic algorithms running on an input drawn from a special probability distribution  $\beta$
- we show that

distribution  $\beta$ ) expected communication volume is large (expectation for

- it follows: there is a bad input for any deterministic algorithm
- the claim for randomized algorithms follows by Yao's Theorem

### Distribution $\beta$

An input is chosen as follows

- take n seeds  $s_1, \ldots, s_n$ , of all k-1 bit binary strings each chosen independently and uniformly at random from the set
- For  $1 \le i \le n$  and  $1 \le j \le p$ :  $x_{ij} = s_i$
- With probability  $\varepsilon$  we choose one processor  $P_u$  uniformly at ranrandom k-1 bit string dom, and replace each seed held by processor  $P_u$  with a completely
- $\forall P_j$  we append a 1 to each  $x_{ij}$ ,  $1 \leq i \leq p$ , except for strings  $x_{hj}$ , such that  $h = j \mod p$ , to which we append a 0.

#### Comments:

| •                                             |  |  |  |
|-----------------------------------------------|--|--|--|
| • $\varepsilon > 0$ is an arbitrary constant) |  |  |  |
| is an ε                                       |  |  |  |
| ırbitra                                       |  |  |  |
| ry con                                        |  |  |  |
| $\operatorname{istant})$                      |  |  |  |
|                                               |  |  |  |
|                                               |  |  |  |
|                                               |  |  |  |
|                                               |  |  |  |
|                                               |  |  |  |
|                                               |  |  |  |

the bit appended is the least significant bit

3rd step called *scrambling* processor  $P_u$ 

### Correct output

scrambled: ... who knows?

nothing scrambled:  $\min X_i = s_i 0 \pmod{p}$ 

### Key technical lemma

#### Lemma

tion  $\beta$ , then the expected communication volume at  $P_i$  is  $\Omega(kn)$ . For any processor  $P_i$ , when the input is chosen according to distribu-

The theorem follows by linearity of expectation:

$$E(\sum_{i \le p} V_i) = \sum_{i \le p} E(V_i) = p \cdot \Omega(kn)$$

 $(V_i = \text{communication volume at } P_i)$ 

# Standard and scrambled inputs

assumption: no other processor than  $P_i$  can be scrambled (this event has probability  $> 1 - \varepsilon$ ,

 $\Rightarrow$  it changes the expectations by a constant factor at most)

notation: S from seeds, no scrambling — input called standard string,

notation (S, -)

- S- standard string,  $P_j$  scrambled, and S replaced at  $P_j$  by S', notation (S, S')

### Viewpoint of $P_j$

- (S,S') can be distinguished from (S',-) only through communication with the rest
- do they have to distinguish?? we answer YES, they MUST distinguish

### distinguished pairs:

(S,-) and (S',-) that differ on some seed  $s_i$  where  $i \neq j \mod p$ 

# Distinguishing distinguished pairs

#### Claim

and (S', -), if it is a distinguished pair. Communication between  $P_j$  and the rest is different on (S, -)

#### Corollary

so the communication must encode these values ...

## Proof of the claim - fooling

- the seeds satisfy  $s_i' < s_i$ assumptions: the communication is the same
- consider (S, S'),
- who outputs  $\min(X_i)$ ?
- but for (S', -):  $\min(X_i) = s'_i 0$ for (S, S'):  $\min(X_i) = s'_i 1$

if this is  $P_j$ , then  $P_j$  does the same for (S', -)

if this is somebody else, then the same value is outputted for (S, -)

but for 
$$(S, -)$$
:  $\min(X_i) = s_i 0$   
for  $(S, S')$ :  $\min(X_i) = s'_i 1$ 

| □ Claim |  |
|---------|--|
|         |  |
|         |  |
|         |  |

#### Counting

• number of distinguished pairs:

 $i = j \mod p$ . for given S, we may alter k-1 bits for each seed  $s_i$  except for

- $2^{(k-1)n(p-1)/p}$  possibilities
- for encoding this number of different communications at least (k-1)n(p-1)/p bits on average

# Application to MST – case $p \leq m/n$

#### Corollary

MST-problem for graphs with n vertices, m edges, p processors and  $p \leq m/n$ , requires communication volume  $\Omega(npk)$ (for some bad input, or expected volume for some bad input)

## Reduction – case $p \leq m/n$

#### nodes:

- disjoint sets A and B of n/2 nodes each
- A partitioned into  $A_1, \ldots, A_p$  each of size n/(2p)

## Reduction – case $p \leq m/n$

The edges of G:

- n/2-1 edges of weight 0 connecting the nodes of A.
- Edges connecting the nodes of A with the nodes of B. the nodes of each  $A_i$ , are connected with all nodes of B. The weights of these edges are arbitrary odd numbers in  $[1, 2^{k-1}]$ Each node of A is connected with p nodes of B,
- Completing the number of edges to m: m-(n/2-1)-pn/2 edges connecting arbitrary nodes of weight

# Application to MST – case $p \ge m/n$

#### Corollary

sors and  $p \ge m/n, \ m \ge 2n$ , requires communication volume MST-problem for graphs with n vertices, m edges, p proces- $\Omega(npk)$ 

(for some bad input, or expected volume for some bad input)

## Reduction—case $p \ge m/n$

#### nodes:

- $\bullet \ A-n/2$
- B m/(2p)
- C filling up to totally n nodes

#### groups:

• A partitioned into  $A_1, \ldots, A_p$  each of size n/(2p)

## Reduction—case $p \geq m/n$

#### edges:

- The nodes of A are connected by n/2 1 edges of weight 0.
- $m/n \cdot n/(2p)$  nodes of B. the nodes of a single group  $A_i$  are connected with all m/(2p) =Each node of A is connected with m/n nodes of B, The weights are arbitrary odd numbers from  $[1, 2^{k-1} - 1]$ .
- of weight 0. The nodes of C are connected to the first node of A by |C| edges
- Some arbitrary edges of weight  $2^k 1$  to make the total number of edges equal to m.



