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Computational model

the system consists of many processors
input data is distributed between processors
the processors are communicating via point-to-point messages

no assumptions on
computational power
synchronization

obliviousness

Point-to-point messages is not a serious restriction, since
e shared memory cell simulated by a processor

e read operation = read request + message with the value




Problems with defining communication volume

e naive: the number of message bits sent

for some models ok, but:

e there are tricky ways of transmitting information without trans-

mitting message bits




Example 1 -

Saving bits while writing

e PRAM, processor P knows k € {1,...n}

e memory cells My, ..., M, are initially empty
o P writes a 1 into My,
Communication volume= 777
e k£ may be determined from the contents of memory

e only 1 message bit sent !!!




Example 2 -

e M stores 1, the rest is empty

Saving bits while reading

e for 1 < n, processor P; reads from M,

processor P gets the full information on £, the rest only a partial

information

the total number of message bits retrieved = 1




Example 3 -

Bits saved using synchronous clock
P, and P, have a common clock
P; has to sent P, a message m < n

P; waits until a moment ¢ such that ¢t = m mod n and sends a

single bit to Ps

P receives the 1 before the change on the clock

the total number of message bits transmitted = 1 !




Definition - encoding communication

e let A be an algorithm on a multiprocessor system

e Definition:

string s encodes communication between processor P and
the rest of the world on input x

iff
the whole communication from the point of view of P may

be computed from s and a description of A

e information retrieved from s describes everything:

timing, addresses, messages, .

e input x has not been used!




Definition - communication volume

communication volume at processor P during execution of algorithm
A is at least k

if

V encoding scheme for the communication between P and the rest of
the world,

d an input x such that the code describing the communication at pro-

cessor P on x has length > k




Vector minimum problem

Task:
e given n sets Xq,..., X,
e cach X, consists of p keys, z;1,...Zip

e goal: compute min(X;), min(Xs), ..., min(X,)

Allocation of input data:
e there are p processors Pi,..., P,

e Vj: P; holds the numbers x5, ...,2z,; (one number from each X;)




Main technical theorem

e Input: vector minimum problem, where each of n sets X, consists

of k-bit numbers and the number of processors is p

e Claim 1:

for any deterministic algorithm solving this problem,

J an input that requires total communication volume Q(npk).

e Claim 2:

for any randomized algorithm that always answers correctly,

d an input where the expected communication volume is

Q(npk).
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Comments on theorem

e it is against intuition:

— compare the most significant bits and many candidates of min-

imum are gone!

— tricks with computations within groups

e well, it usually works, but not always!

e Theorem says:

no randomization can help!!!
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Proof headlines

analysis of deterministic algorithms running on an input drawn

from a special probability distribution 3

we show that

expected communication volume is large (expectation for
distribution f3)

it follows: there is a bad input for any deterministic algorithm

the claim for randomized algorithms follows by Yao’s Theorem
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Distribution (

An input is chosen as follows

e take n seeds s1,..., sy,
each chosen independently and uniformly at random from the set
of all £ — 1 bit binary strings

Forl1<i<nand1l<j <p:
Lij = Si

With probability € we choose one processor P, uniformly at ran-
dom, and replace each seed held by processor P, with a completely
random k — 1 bit string

V P; we append a 1 to each z;;, 1 <1 < p, except for strings xp,;,
such that h = 7 mod p, to which we append a 0.

Comments:
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e ¢ > ( is an arbitrary constant)

e Jrd step called scrambling processor P,

e the bit appended is the least significant bit
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Correct output

e nothing scrambled: min X; = 5,0 (5,0 is at P; mod p)

e scrambled: ... who knows?
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Key technical lemma

Lemma
For any processor P;, when the input is chosen according to distribu-

tion 3, then the expected communication volume at P; is Q(kn).

The theorem follows by linearity of expectation:

E(Y Vi)=) E(Vi)=p-Q(kn)

1<p 1<p

(V; = communication volume at P;)
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Standard and scrambled inputs

e assumption: no other processor than P; can be scrambled
(this event has probability > 1 — ¢,

= it changes the expectations by a constant factor at most)

e notation:

— S from seeds, no scrambling — input called standard string,
notation (.5, —)

— S— standard string,

P; scrambled, and S replaced at P; by S’,
notation (.5,.5")
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Viewpoint of P;

e (5,5 can be distinguished from (S’,—) only through communi-

cation with the rest
e do they have to distinguish??
we answer YES, they MUST distinguish
distinguished pairs:

e (S,—) and (S’, —) that differ on some seed s; where i # j mod p
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Distinguishing distinguished pairs

Claim

Communication between P; and the rest is different on (.S, —)

and (5', —), if it is a distinguished pair.
Corollary

so the communication must encode these values ...

19



Proof of the claim - fooling

e assumptions: the communication is the same

the seeds satisfy s < s;
e consider (S,5"),

— who outputs min(Xj;)?
— if this is P;, then P; does the same for (S', —)
but for (5’,—): min(X;) = s.0
for (5,5): min(X;) = s1
— if this is somebody else, then the same value is outputted for
A%u |v
but for (S, —):
for (9,5"):
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O Claim
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Counting -

e number of distinguished pairs:
for given S, we may alter £ — 1 bits for each seed s; except for
1 = 7 mod p.

o 2(k=1n(P=1)/P possibilities

e for encoding this number of different communications

at least (k — 1)n(p — 1)/p bits on average
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Application to MST — case p < m/n

Corollary

MST-problem for graphs with n vertices, m edges, p processors
and p < m/n, requires communication volume Q(npk)

(for some bad input, or expected volume for some bad input)
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Reduction — case p < m/n

nodes:
e disjoint sets A and B of n/2 nodes each

o A partitioned into Ay, ..., 4,
each of size n/(2p)
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Reduction — case p < m/n

The edges of G:

e n/2 — 1 edges of weight 0 connecting the nodes of A.

e Edges connecting the nodes of A with the nodes of B.
Each node of A is connected with p nodes of B,
the nodes of each A;, are connected with all nodes of B.

The weights of these edges are arbitrary odd numbers in [1,2F~1 —
1].

e Completing the number of edges to m:

m — (n/2 — 1) — pn/2 edges connecting arbitrary nodes of weight
2k — 1.
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Reduction —case p < m/n
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Application to MST — case p > m/n

Corollary

MST-problem for graphs with n vertices, m edges, p proces-
sors and p > m/n, m > 2n , requires communication volume
Q(npk)

(for some bad input, or expected volume for some bad input)
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Reduction— case p > m/n

nodes:

e A—n/2

o B-m/(2p)

e (' — filling up to totally n nodes
groups:

e A partitioned into A4y, ..., A4,
each of size n/(2p)
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Reduction— case p > m/n

edges:

The nodes of A are connected by n/2 — 1 edges of weight 0.

Each node of A is connected with m/n nodes of B,

the nodes of a single group A; are connected with all m/(2p) =
m/n - n/(2p) nodes of B.
The weights are arbitrary odd numbers from [1,2%~1 — 1].

The nodes of C are connected to the first node of A by |C| edges
of weight 0.

Some arbitrary edges of weight 2 — 1 to make the total number

of edges equal to m.
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