Adversary Immune Size Approximation of Single-Hop Radio Networks

Jędrzej Kabarowski, Mirek Kutyłowski, Wojtek Rutkowski

Institute of Mathematics and Computer Science, Wrocław University of Technology

> TAMC'2006 Beijing

Jędrzej Kabarowski, Mirek Kutylowski, Wojtek Rutkowski Adversary Immune Size Approximation of Single-Hop Radio Networ

(日)

Single-Hop Radio Network

A network consists of a number of stations communicating via a radio channel.

Jedrzej Kabarowski, Mirek Kutyłowski, Wojtek Rutkowski Adversary Immune Size Approximation of Single-Hop Radio Networ

-

possible status of a station:

dead

inactive its transmitter and receiver are switched off, internal work only active sending xor monitoring the channel (not necessarily getting a message)

number of stations, status of a station – unpredictable

(4 同) (ヨ) (ヨ) (

Single-hop Radio Network

State of a network from an algorithmic point of view.

Jędrzej Kabarowski, Mirek Kutyłowski, Wojtek Rutkowski

▲ □ ▷ ▲ 중 ▷ ▲ 중 ▷ ▲ 중 ○ Q (Adversary Immune Size Approximation of Single-Hop Radio Networ

- communication via a shared broadcast channel
- a signal from a station can reach everybody -single-hop
- one cannot simultaneously transmit and listen

< ロ > < 同 > < 回 > < 回 > .

- communication via a shared broadcast channel
- a signal from a station can reach everybody -single-hop
- one cannot simultaneously transmit and listen
- if two stations send then collision no message comes through
- common clock, synchronous communication, discrete time steps

- no central control,
- initially a station knows only about itself, no knowledge on existance of other stations,
- the stations may have some preloaded shared knowledge (secret keys ...)

(4 同) (1 日) (日) (1 日) (1 H) (

often said:

- no central control, so resistant against failures and attacks
- dynamically adopting

but the truth is:

we are used to work with algorithms for:

- Iow dynamic systems
- reliable communication
- not many "bad guys" in the system
- unproblematic initialization

here the situation is completely different

(4月) (4日) (4日)

Start situation::

- each station knows only about itself and the algorithm executed
- Goal:
 - build a logical infrastructure so that we can run algorithms on this basis.

It is like "booting" ad hoc networks.

・ 同 ト ・ ヨ ト ・ ヨ ト

One of the very basic problems to solve:

find a number N such that

 $n/c \le N \le c \cdot n$

where n is the (unknown) number of the stations

time - the number of time slots used by the algorithm

time - the number of time slots used by the algorithm

energy cost - the maximal *k* such that some station transmits/listens *k* times during algorithm execution

- communication consumes almost all energy used (processor and sensors usage negligible)
- energy required for transmitting and listening of the same magnitude

- random transmission errors,
- or burst errors,
- or even a malicious adversary knowing the algorithm

 legitimate stations share a secret that is not known by the adversary

 \Rightarrow keyed MAC can be used to prevent faking messages by an adversary

- an adversary may attempt to cause collisions so that the algorithm fails
- the adversary cannot use much higher communication resources than the other stations

< ロ > < 同 > < 回 > < 回 > .

Suppose we have *K* stations.

A step:

a station decides to transmit a message with probability p, then probability that exactly one station transmits equals

$$K \cdot p \cdot (1-p)^{K-1}$$

- ► the probability maximized for p = 1/K, the value achieved is $\approx 1/e$
- the probability \approx 0, if *p* is not close to 1/K.

イロト イポト イヨト イヨト ヨー わらつ

Steps executed:

for probabilities

$$p = \dots, 2^{-i}, 2^{-(i+1)}, 2^{-(i+2)}, \dots$$

until a single message sent

(for each probability some number of trials takes place)

then 1/p taken as an approximation of the number of stations

< ロ > < 同 > < 回 > < 回 > .

Attack

the adversary sends junk messages when probability p is close to $1/{\it K}$

then the algorithm will never terminate

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Main Result

- energy cost $O(\log \log N \cdot \sqrt{\log N})$
- time complexity $O(\log^{2.5} N \cdot \log \log N)$
- outcome correct with probability $\geq 1 2^{-z}$ where $z = \Omega(\sqrt{\log N})$ for an adversary with energy cost $O(\log N)$
- ► the same (correct) answer known to all stations except o(N/2^{√log N}) of them.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●

Main Result

- energy cost $O(\log \log N \cdot \sqrt{\log N})$
- time complexity $O(\log^{2.5} N \cdot \log \log N)$
- outcome correct with probability $\geq 1 2^{-z}$ where $z = \Omega(\sqrt{\log N})$ for an adversary with energy cost $O(\log N)$
- ► the same (correct) answer known to all stations except o(N/2^{√log N}) of them.

Best fragile algorithm (Jurdziński, K., Zatopiański, COCOON'2002): runtime $O(\log^{2+\epsilon} n)$, energy cost $O((\log \log n)^{\epsilon})$ for any $\epsilon > 0$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●

- within a group of k time slots only one really used by the algorithm
- which slot is used depends on a secret unknown to the adversary
- For an adversary it is difficult to make a collision at the right moment!
- but waste of communication time

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Interleaving Time Windows

A technique used when groups of stations perform independent computations in parallel:

- ► a time window of length *k* used simultaneously by *k* groups
- for communication in window t, group i uses slot

f(secret, *t*;*i*)

f(secret, t; -) - a cryptographic pseudorandom permutation

Interleaving Time Windows

A technique used when groups of stations perform independent computations in parallel:

- ► a time window of length *k* used simultaneously by *k* groups
- for communication in window t, group i uses slot

f(secret, *t*;*i*)

f(secret, t; -) - a cryptographic pseudorandom permutation

Advantages:

- each time slot used
- behaviour from a point of view of a group the same as for time windows
- an adversary cannot attack a single group the attack goes against all groups with less collisions for each group

General strategy:

- perform the basic algorithm in many groups independently
- in a group try different probabilities
- the number of groups is too large to allow an adversary disturb all of them

Algorithm Idea -

Sucesses:

- single transmissions for about the same probabilities
- take some median
- one cannot listen all the time due to energy cost

Experiment for a single group and a single probability:

- 8 trials
- success if a message exactly 3 times came through

success in a single experiment

Dissemination of information:

- gossiping
- even if two stations do not have the same view, it is likely that the median probability is the same

Thanks for your attention

Jędrzej Kabarowski, Mirek Kutylowski, Wojtek Rutkowski Adversary Immune Size Approximation of Single-Hop Radio Networ