How to use untrusty cryptographic devices

Daniel Kucner

Institute of Computer Science
University of Wrocław

Mirosław Kutyłowski

Institute of Mathematics
Wrocław University of Technology
and CC Signet

Black-Box device

the following data is available for a black-box device:

- specification of a protocol implemented,
- some quality certificates (according to Common Criteria, FIPS, ...)

Black-Box device

the following data is available for a black-box device:

- specification of a protocol implemented,
- some quality certificates (according to Common Criteria, FIPS, ...)

Advantages:

- unchangeable (no viruses, no malicious changes)
- safer and faster then software

Black-Box device

the following data is available for a black-box device:

- specification of a protocol implemented,
- some quality certificates (according to Common Criteria, FIPS, ...)

Advantages:

- unchangeable (no viruses, no malicious changes)
- safer and faster then software

Disadvantages:

a real black-box – impossible to verify

How do we know that a device is honest?

- verification is extremely complex
- certification authorities need to be trusted
- produced by a foreign manufacturer (under control of a foreign secret service?)

How do we know that a device is honest?

- verification is extremely complex
- certification authorities need to be trusted
- produced by a foreign manufacturer (under control of a foreign secret service?)

the danger is real – kleptography techniques

Diffie-Hellman key exchange

Alice

generate random a

$$x \leftarrow g^a \bmod p$$

send x to Bob

$$k \leftarrow y^a \bmod p$$

Bob

generate random b

$$y \leftarrow g^b \bmod p$$

send y to Alice

$$k \leftarrow x^b \bmod p$$

Kleptography - device (DH)

 $(X, Y = \alpha^X \mod p)$ – adversary's keys.

Device

- 1. generate random $c_1 \in \mathbb{Z}_{p-1}$
- 2. return $m_1 = \alpha^{c_1} \bmod p$
- 3. $z := m_1 \cdot Y^{c_1} \mod p$
- 4. return $m_2 = \alpha^{H(z)} \mod p$

Kleptography - device (DH)

 $(X, Y = \alpha^X \mod p)$ – adversary's keys.

Device

- 1. generate random $c_1 \in \mathbb{Z}_{p-1}$
- 2. return $m_1 = \alpha^{c_1} \mod p$
- 3. $z := m_1 \cdot Y^{c_1} \mod p$
- 4. return $m_2 = \alpha^{H(z)} \mod p$

Attack

- 1. Adversary eavesdrops m_1 , m_2
- $2. z := m_1 \cdot m_1^X \bmod p$
- 3. if $m_2 := \alpha^{H(z)} \bmod p$ then return H(z)

Kleptography - detection

Different number of exponentiation changes stochastic characteristic of computation time

DH clear device

generate random $c_1 \in \mathbb{Z}_{p-1}$ $m_1 = \alpha^{c_1} \mod p$

DH contaminated device

generate random
$$t \in \{0,1\}$$

$$z := \frac{\alpha^{c_1 - Wt} \cdot Y^{-ac_1 - b} \bmod p}{c_2 := H(z), m_2 = \alpha^{c_2} \bmod p}$$

Idea of solution

- combine two or more devices of different manufacturers
- even if each of them is contaminated, the result should be secure

Secure DH with contaminated devices

- 1. $x_1 \leftarrow \alpha^{k_1} \bmod p \text{ using } D_1$
- 2. $x_2 \leftarrow \alpha^{k_2} \bmod p$ using D_2

Secure DH with contaminated devices

- 1. $x_1 \leftarrow \alpha^{k_1} \mod p \text{ using } D_1$
- 2. $x_2 \leftarrow \alpha^{k_2} \mod p$ using D_2
- 3. send $x \leftarrow x_1 x_2 \mod p$ to Bob
- 4. get y from Bob

Secure DH with contaminated devices

- 1. $x_1 \leftarrow \alpha^{k_1} \bmod p \text{ using } D_1$
- 2. $x_2 \leftarrow \alpha^{k_2} \mod p \text{ using } D_2$
- 3. send $x \leftarrow x_1 x_2 \mod p$ to Bob
- 4. get y from Bob
- 5. $z_1 \leftarrow y^{k_1} \bmod p$ using D_1
- 6. $z_2 \leftarrow y^{k_2} \bmod p$ using D_2
- 7. $z \leftarrow z_1 z_2 \bmod p$

Proof of SDH security - outline

- if one device is secure then whole is secure
- otherwise adversary has to solve problem:

```
given w = u \cdot v \mod p
find r = u + v \mod p
```

- 1. set in D_1 a generator $\alpha_1 = \alpha$
- 2. compute $x_1 \leftarrow \alpha^{k_1}$ using D_1

- 1. set in D_1 a generator $\alpha_1 = \alpha$
- 2. compute $x_1 \leftarrow \alpha^{k_1}$ using D_1
- 3. set in D_2 a generator $\alpha_2 = x_1$
- 4. compute $x_2 \leftarrow \alpha_2^{k_2}$ using D_2
- 5. send x_2 to the partner and obtain y

- 1. set in D_1 a generator $\alpha_1 = \alpha$
- 2. compute $x_1 \leftarrow \alpha^{k_1}$ using D_1
- 3. set in D_2 a generator $\alpha_2 = x_1$
- 4. compute $x_2 \leftarrow \alpha_2^{k_2}$ using D_2
- 5. send x_2 to the partner and obtain y
- 6. put y into D_2 and compute $y_2 \leftarrow y^{k_2}$
- 7. put y_2 into D_1 and compute the key $y \leftarrow y_2^{k_1}$

- 1. set in D_1 a generator $\alpha_1 = \alpha$
- 2. compute $x_1 \leftarrow \alpha^{k_1}$ using D_1
- 3. set in D_2 a generator $\alpha_2 = x_1$
- 4. compute $x_2 \leftarrow \alpha_2^{k_2}$ using D_2
- 5. send x_2 to the partner and obtain y
- 6. put y into D_2 and compute $y_2 \leftarrow y^{k_2}$
- 7. put y_2 into D_1 and compute the key $y \leftarrow y_2^{k_1}$

$$y = y_2^{k_1} = y^{k_1 \cdot k_2}$$

Attack on (in)secure DH

$$(x_2^{1)}, x_2^{2)}, (x_2^{3)}$$
 – observable

$$x_2^{(1)} = (x_1^{(1)})^{k_2^{(1)}}$$

$$x_2^{(2)} = (x_1^{(2)})^{k_2^{(2)}} = (x_1^{(2)})^{x_2^{(1)}}$$

$$x_2^{(3)} = (x_1^{(3)})^{k_2^{(3)}} = (x_1^{(3)})^{x_2^{(2)}}$$

then

$$x_1^{2)} = (x_2^{2)})^{f_1} \bmod p$$
 $x_1^{3)} = (x_2^{3)})^{f_2} \bmod p$ where $f_i = (x_2^{i)})^{-1} \bmod p - 1$

iterate:

$$x_1^{3)} = \alpha^{x_1^{2)}}$$
$$x_1^{2)} \cdot x_2^{2)} \bmod p - 1$$

- 1. set in D_1 a generator $\alpha_1 = \alpha$
- 2. compute $x_1 \leftarrow \alpha^{k_1}$ using D_1 .
- 3. set in D_2 a generator $\alpha_2 = x_1$
- 4. compute $x_2 \leftarrow \alpha_2^{k_2}$ using D_2 .
- 5. send x_2 to the partner and obtain y
- 6. put y into D_2 and compute $y_2 \leftarrow y^{k_2}$
- 7. put y_2 into D_1 and compute $y \leftarrow y_2^{k_1}$

ElGamal Encryption

- 1. pick a random k: 0 < k < p-1
- 2. compute $r \leftarrow \alpha^k \mod p$
- 3. compute $s \leftarrow m \cdot y^k \bmod p$

- 1. compute ciphertext (r_1, s_1) using device D
- 2. compute ciphertext (r_2, s_2) of message 1 (on PC)
- 3. $r \leftarrow r_1 \cdot r_2 \bmod p$ (on PC)
- 4. $s \leftarrow s_1 \cdot s_2 \mod p$ (on PC)
- 5. return ciphertext (r, s)

- 1. find m_1, m_2 so that $m \equiv m_1 \cdot m_2 \mod p$
- **2.** $(r_1, s_1) \leftarrow Enc_{D_1}(m_1)$
- 3. $(r_2, s_2) \leftarrow Enc_{D_2}(m_2)$
- 4. $r \leftarrow r_1 \cdot r_2 \mod p$ (on PC)
- 5. $s \leftarrow s_1 \cdot s_2 \mod p$ (on PC)
- 6. return ciphertext (r, s)

- 1. find m_1, m_2 so that $m \equiv m_1 \cdot m_2 \mod p$
- **2.** $(r_1, s_1) \leftarrow Enc_{D_1}(m_1)$
- 3. $(r_2, s_2) \leftarrow Enc_{D_2}(m_2)$
- **4.** $r \leftarrow r_1 \cdot r_2 \mod p$ (on PC)
- 5. $s \leftarrow s_1 \cdot s_2 \mod p$ (on PC)
- 6. return ciphertext (r, s)

$$r = r_1 \cdot r_2 = \alpha^{k_1 + k_2}$$

$$s = s_1 \cdot s_2 = m_1 \cdot y^{k_1} \cdot m_2 \cdot y^{k_2} = m \cdot y^{k_1 + k_2}$$

- 1. find $m_1, m_2 : m \equiv m_1 \cdot m_2 \mod p$
- **2.** $(r_1, s_1) \leftarrow Enc_{D_1}(m_1)$

- 1. find $m_1, m_2 : m \equiv m_1 \cdot m_2 \mod p$
- 2. $(r_1, s_1) \leftarrow Enc_{D_1}(m_1)$
- 3. D_2 computes (r_2, s_2) , a ciphertext of 1
- 4. set α of D_3 to r_2
- 5. set public key of D_3 to s_2
- **6.** $(r_3, s_3) \leftarrow Enc_{D_3}(m_2)$

- 1. find $m_1, m_2 : m \equiv m_1 \cdot m_2 \mod p$
- 2. $(r_1, s_1) \leftarrow Enc_{D_1}(m_1)$
- 3. D_2 computes (r_2, s_2) , a ciphertext of 1
- 4. set α of D_3 to r_2
- 5. set public key of D_3 to s_2
- **6.** $(r_3, s_3) \leftarrow Enc_{D_3}(m_2)$
- 7. $r \leftarrow r_1 \cdot r_3 \bmod p$
- 8. $s \leftarrow s_1 \cdot s_3 \bmod p$
- 9. return ciphertext (r, s)

- 1. find $m_1, m_2 : m \equiv m_1 \cdot m_2 \mod p$
- 2. $(r_1, s_1) \leftarrow Enc_{D_1}(m_1)$
- 3. D_2 computes (r_2, s_2) , a ciphertext of 1
- 4. set α of D_3 to r_2
- 5. set public key of D_3 to s_2
- 6. $(r_3, s_3) \leftarrow Enc_{D_3}(m_2)$
- 7. $r \leftarrow r_1 \cdot r_3 \mod p$
- 8. $s \leftarrow s_1 \cdot s_3 \mod p$
- 9. return ciphertext (r, s)

$$r = r_1 \cdot r_3 = \alpha^{k_1} \cdot r_2^{k_3} = \alpha^{k_1 + k_2 \cdot k_3}$$

$$s = m_1 \cdot y^{k_1} \cdot m_2 \cdot s_2^{k_3} = m_1 \cdot y^{k_1} \cdot m_2 \cdot y^{k_2 \cdot k_3} = m \cdot y^{k_1 + k_2 \cdot k_3}$$

How to get product of exponents?

- if both devices have the same parameters p, α, y , then DH could be broken
- both devices have the same p as above
- devices have different p no general algorithm, perhaps special p, p_1, p_2 exist such that for random $x_1 = \alpha_1^{k_1} \mod p_1$ and $x_2 = \alpha_2^{k_2} \mod p_2$ we could compute $x = \alpha^{k_1 \cdot k_2}$?

ElGamal Signature Protocol

Sign a message m:

- 1. compute a random k $(1 \le k \le p-1)$
- 2. $r \leftarrow \alpha^k \mod p$
- 3. $s \leftarrow k^{-1}(H(m) a \cdot r) \mod p 1$
- 4. output the signature S(m) = (r, s)

Secure ElGamal Signature

- 1. Alice sends arbitrary hash h to D_1
- 2. D_1 generates (r_1, s_1) for parameters p, α, u (random private key)
- 3. Alice computes k_1 from s_1, r_1, u and h (on PC)
- 4. Alice sets generator of D_2 to r_1
- 5. D_2 generates (r_2, s_2) for message m
- **6.** $(r,s) = (r_2, s_2/k_1 \mod p 1)$ for parameters p, α, x

Conclusions

We have shown how to use devices for

- Diffie-Hellman
- ElGamal Encryption
- ElGamal Signature

to keep safe even if devices are contaminated.

Problems

- what about systems without random numbers? for splitting the secret!
- RSA well known: split d into $d_1 + d_2$
- could we construct such a protocol for Rabin encryption, signature?