Secure data storing in a pool of vulnerable servers

Marcin Gogolewski (Cryptology Center, AMU Poznań)

Mirosław Kutyłowski (Wrocław University of Technology)

Secure storing data

- contents protection: encryption (size?)
- protection against destroying: redundancy, random locations, distributed systems
- protection against administrators: anonymity
- active adversary

Active adversary

- may attack, overtake or destroy any location
- cannot brake strong cryptographic codes
- cannot influence random sources of the user

Environment

- shared communication channel providing anonymity
- a number of data servers
- data stored encrypted sufficiently
- public keys of servers known

Secure data storing in a pool of vulnerable servers

ACS'2002 M. Gogolewski, M. Kutyłowski

Design goals

- minimize communication
- 100% success or failure

Naive solution

- user chooses k servers at random
- using public keys informs these servers about symmetric key
- transmit ion of data encrypted with symmetric key
- receipts
- protocol if something goes wrong

Union solution - creating of an onion by Alice

- 1. Alice chooses $j_1, \ldots, j_k \leq n$ at random.
- Alice chooses at random a symmetric key K, then a random key K_0 of the same length, and finally computes $K_1 = K \text{ XOR } K_0$
- 3. Alice chooses at random strings SIG(M), r_0, r_1, \ldots, r_k , and s_1, \ldots, s_k of a fixed length l.
- 4. The onion C_k is created by Alice. The kernel C_0 consists of

$$r_0, s_1, \ldots, s_k, K_1, SIG(M)$$
.

Then for $i \leq k$ the onion C_i has the form

$$E_{P(j_i)}\left(r_i,s_i,\mathcal{F},K_0,C_{i-1}\right)$$

public key of server S_u , and \mathcal{F} sufficiently long fixed sequence $E_X(Y) = \text{ciphertext obtained from } Y \text{ with an asymmetric key } X P(u) =$

Alice sends

- the onion C_k ,
- the message M encrypted with a key K using a symmetric encryption algorithm, with the string SIG(M) in front of it.

Processing an onion by the servers

if X transmitted, then server S_i :

1. decrypts X with its private key, if the plaintext obtained has not the form

$$r, s, \mathcal{F}, L, C$$

cessing Xand C is a ciphertext, or forms a kernel of an onion, then S_i stops prowhere r, s are strings of length l, L is the key for symmetric algorithm,

2. if decrypted ciphertext is not a kernel, then S_i associates s with key L and stores it for a later use, and publishes C on the bulletin board.

Processing an onion by the servers

3. if decrypted ciphertext is a kernel of an onion

$$r_0, s_1, \ldots, s_k, K_1, SIG(M)$$

board. then S_i truncates r_0 from the kernel and puts the kernel on the bulletin

Storing data by servers

- S_i detects on a bulletin board a truncated kernel containing a string s it has saved together with K_0 while processing an onion,
- it computes $K := K_0 \text{ XOR } K_1$,
- when a ciphertext with SIG(M) transmitted, it decrypts it with K and stores the result.

Secure data storing in a pool of vulnerable servers

ACS'2002 M. Gogolewski, M. Kutyłowski

Conclusion

- optimal number of messages
- disrupting an onion nobody stores data