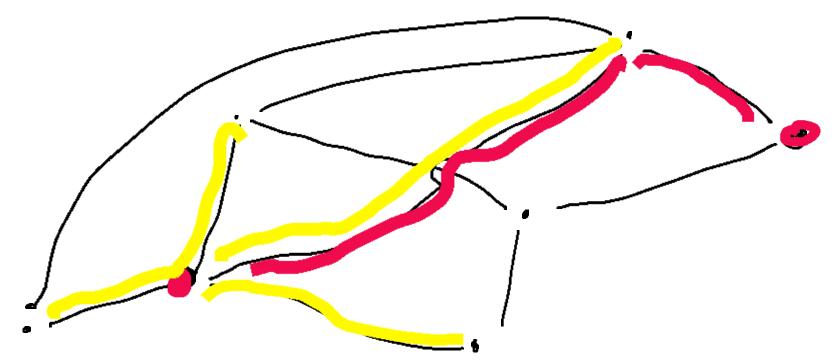
Communication complexity

Algo 21

All pairs shortest path problem (APSP)

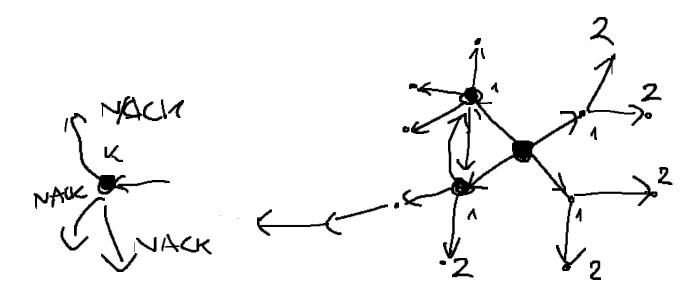
problem



Naïve solution

Algorithm 11.1 Naive Diameter Construction

- i: all nodes compute their radius by synchronous flooding/echo
- 2: all nodes flood their radius on the constructed BFS tree
- 3: the maximum radius a node sees is the diameter

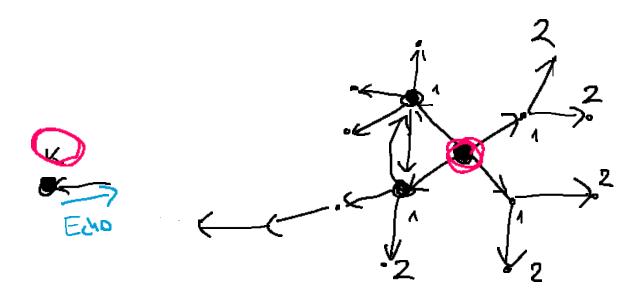


1st time ACK 71st tre MACK

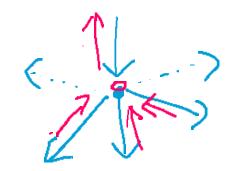
Naïve solution

Algorithm 11.1 Naive Diameter Construction

- i: all nodes compute their radius by synchronous flooding/echo
- 2: all nodes flood their radius on the constructed BFS tree
- 3: the maximum radius a node sees is the diameter



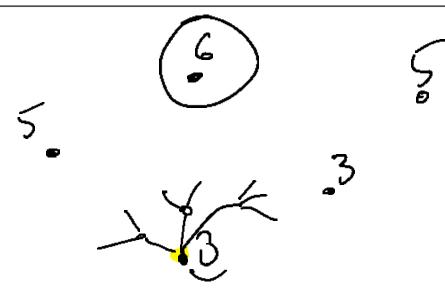
1st the ACK 71st tre MACK

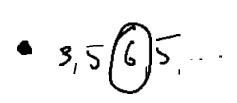


Naïve solution

Algorithm 11.1 Naive Diameter Construction

- 1: all nodes compute their radius by synchronous flooding/echo
- 2. <u>all nodes flood their radius on the constructed DFS tree</u>
- 3: the maximum radius a node sees is the diameter





Naïve solution complexity

 $2 \log n$ $\rightarrow O(n \log n)$

time (,) for diameter D Congestion of messages – n algorithms executed in parallel

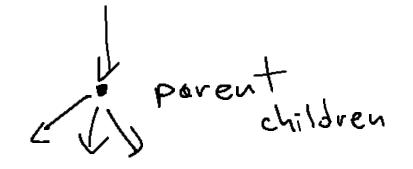
1 flood+ echo time ! BES trees 2 messages at once 5 Congestion > h logn processing: " Steps

Reasonable size of messages

something like

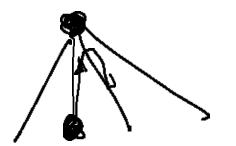
Building block -- BFS

Definition 11.2. (BFS_v) Performing a breadth first search at node v produces <u>spanning tree BFS_v</u> (see Chapter 2). This takes time $\mathcal{O}(D)$ using small messages.

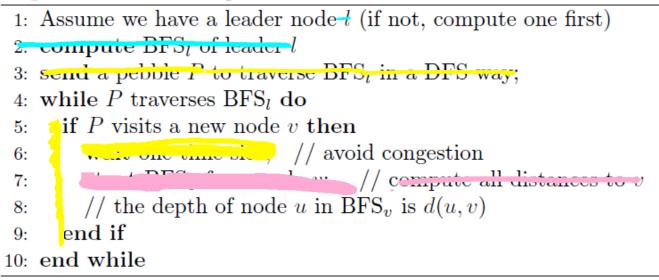


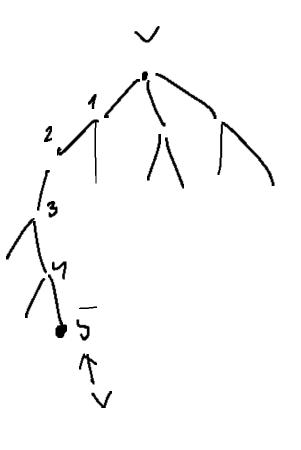
DFS based on BSF

Pebbles algorithm



Algorithm 11.3 Computes \dots on G.





Algorithm 11.3 Computes APSP on G.

- 1: Assume we have a leader node l (if not, compute one first)
- 2: compute BFS_l of leader l
- 3: send a pebble P to traverse BFS_l in a DFS way;
- 4: while P traverses BFS_l do
- 5: **if** P visits a new node v **then**
- 6: wait one time slot; // avoid congestion
- 7: start BFS_v from node v; // compute all distances to v
- 8: // the depth of node u in BFS_v is d(u, v)
- 9: end if
- 10: end while

Algorithm 11.3 Computes APSP on G.

- 1: Assume we have a leader node l (if not, compute one first)
- 2: compute BFS_l of leader l
- 3: send a pebble P to traverse BFS_l in a DFS way;
- 4: while P traverses BFS_l do
- 5: **if** P visits a new node v **then**
- 6: <u>wait one time slot;</u> // avoid congestion
- 7: start BFS_v from node v; // compute all distances to v
- 8: // the depth of node u in BFS_v is d(u, v)
- 9: end if
- 10: end while

Avoiding congestions

Lemma 11.4. In Algorithm 11.3, at no time a noder v is simultaneously active for both BES_a and BES_o.

- Let: BFS started at u at time (, at v at time t), at v at time t
- $t_v + d(v, w) \ge (t_u + d(u, v) + 1) + d(v, w) \ge t_u + d(u, w) + 1 \ge t_u + d(u, w)$

+(n) = +(v) because of P

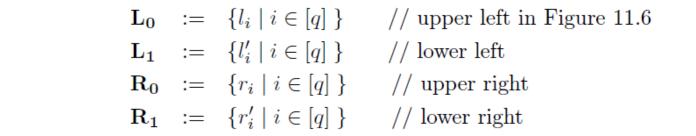
Time complexity

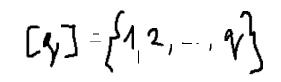
Theorem 11.5. Algorithm 11.3 computes APSP (all pairs shortest path) in time Opebble time: O(~) BFS, OD Josef BFS $\mathcal{O}(\mathsf{D})$ Time: 0(D) -7 O(n) message log(n) and not nlogn

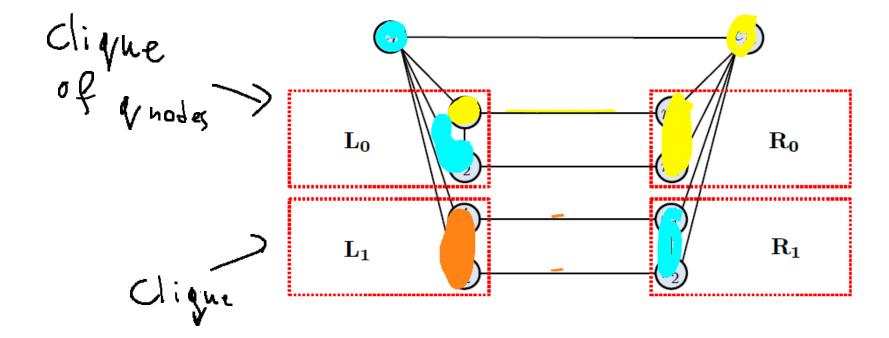
Lower bound

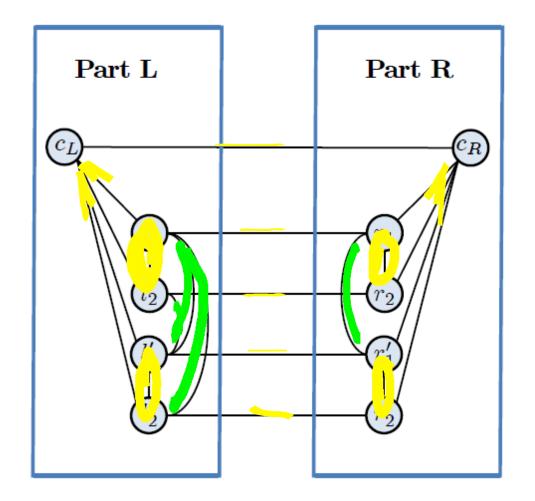
fine O(n/10gn)

Graph used for showing n/log n lower bound

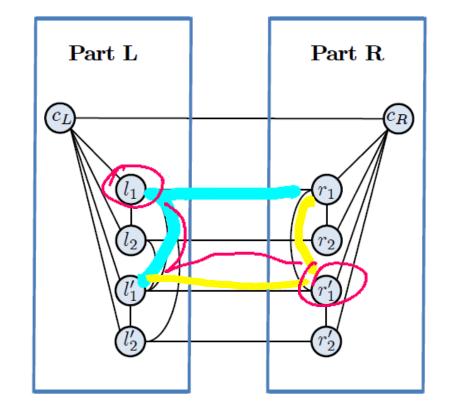


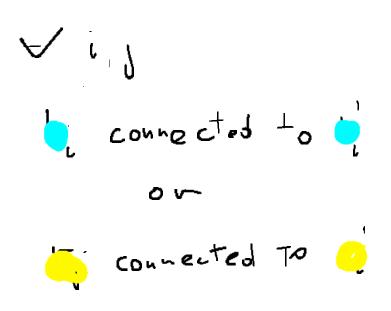


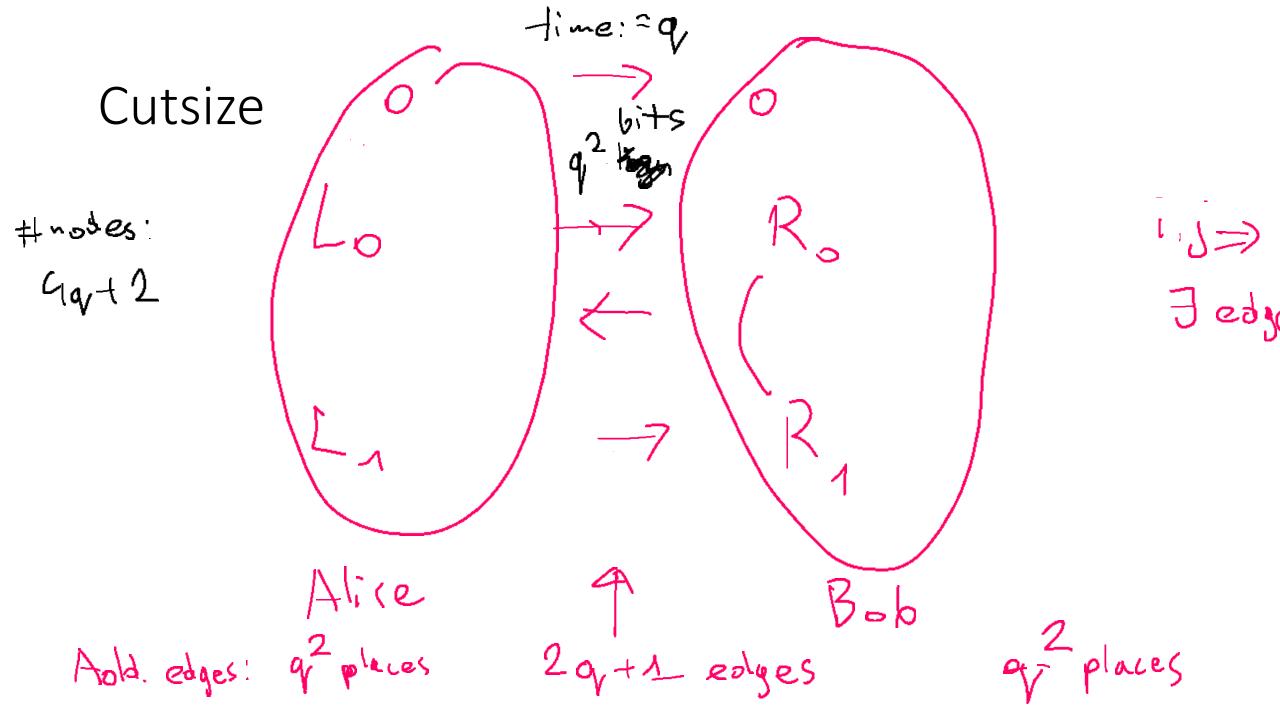




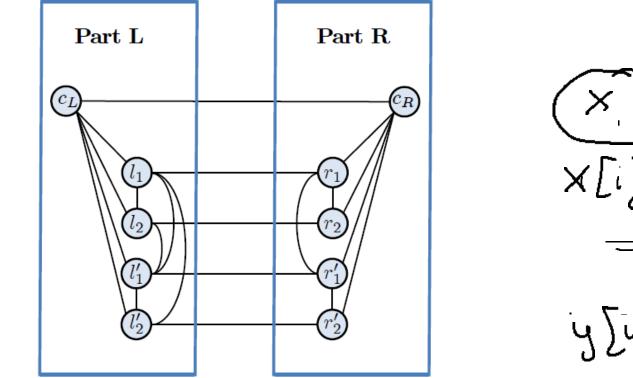
Diameter 2 or 3

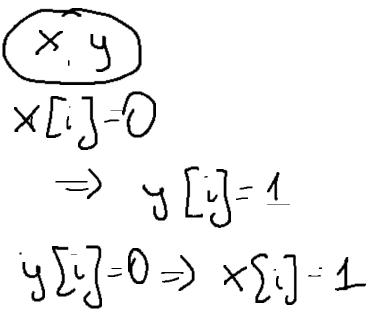






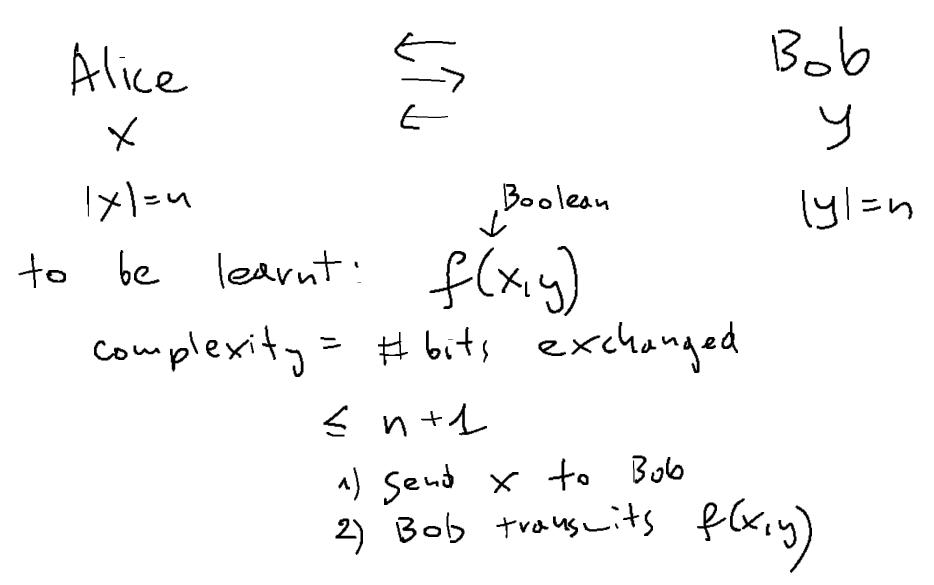
Cutsize





Informal argument

2-party communication model



Communication complexity

Equality, its complexity?

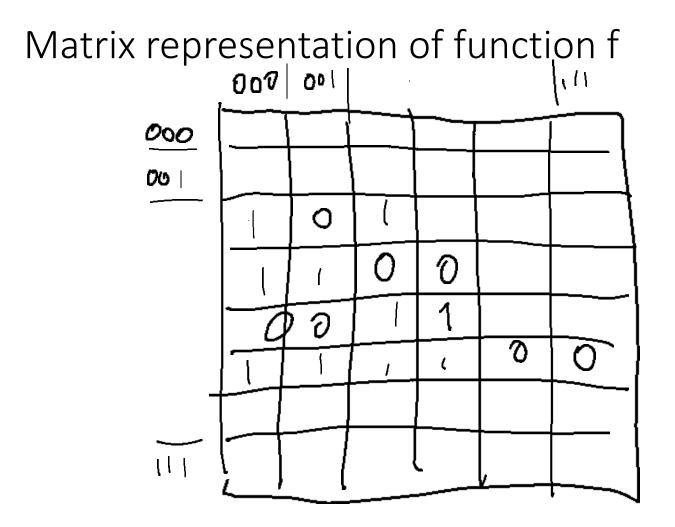
(Equality.) We define the equality function EQ to be:

$$EQ(x, y) := \begin{cases} 1 & : x = y \\ 0 & : x \neq y \end{cases}$$

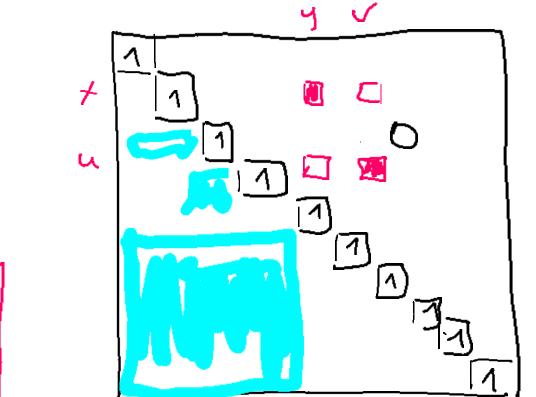
$$everage might le s-all
$$x[1] \longrightarrow y[1] \stackrel{?}{=} x[1]$$

$$x[2] \longrightarrow y[1] \stackrel{.}{=} x[1]$$$$

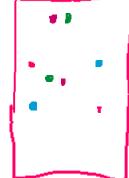
Formal definition of comm. complexity

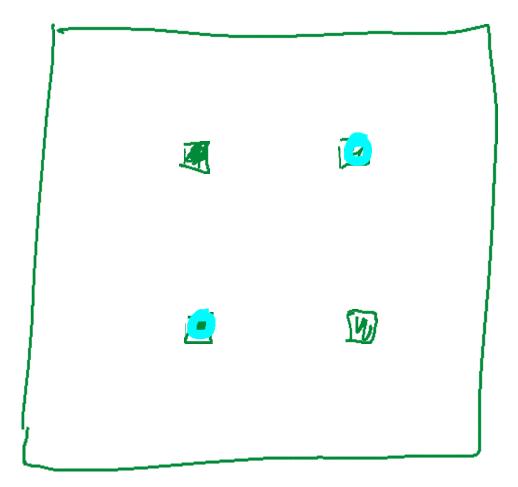


rectangles



(X, y) E R (4, V) E R (<, √) ∈ R (4, y) ∈ R





Monochromatic rectangles

(\mathbf{EQ}	000	001	010	011	100	101	110	111	$\leftarrow x$
	000	1	0	0	0	0	0	0	0	
	001	0	1	0	0	0	0	0	0	
	010	0	0	1	0	0	0	0	0	
	011	0	0	0	1	0	0	0	0	
	100	0	0	0	0	1	0	0	0	
	101	0	0	0	0	0	1	0	0	
	110	0	0	0	0	0	0	1	0	
	111	0	0	0	0	0	0	0	1	
ĺ	$\uparrow y$)

Fooling set

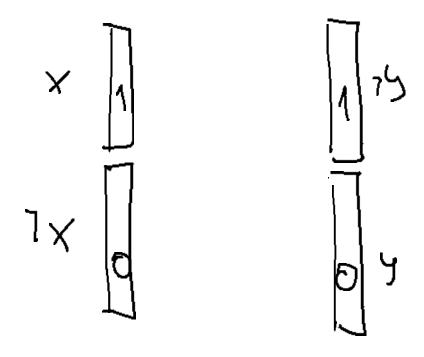
Fooling set lemma

If S is a fooling set for f, then $CC(f) = \Omega(\log |S|)$.

Equality

Auxiliary fact

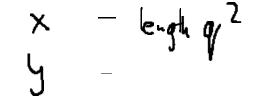
Lemma 11.21. Let x, y be k-bit strings. Then $x \neq y$ if and only if there is an index $i \in [2k]$ such that the i^{th} bit of $x \circ \overline{x}$ and the i^{th} bit of $\overline{y} \circ y$ are both 0.

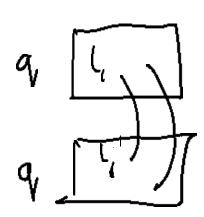


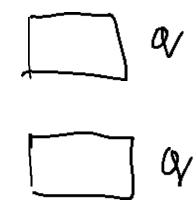
Mapping to graph

Definition 11.22. Using the parameter q defined before, we define a bijective map between all pairs x, y of q^2 -bit strings and the graphs in \mathcal{G} : each pair of strings x, y is mapped to graph $G_{x,y} \in \mathcal{G}$ that is derived from skeleton G' by adding

- edge (l_i, l'_j) to Part L if and only if the $(j + q \cdot (i 1))^{th}$ bit of x is 1.
- edge (r_i, r'_j) to Part R if and only if the $(j + q \cdot (i 1))^{th}$ bit of y is 1.

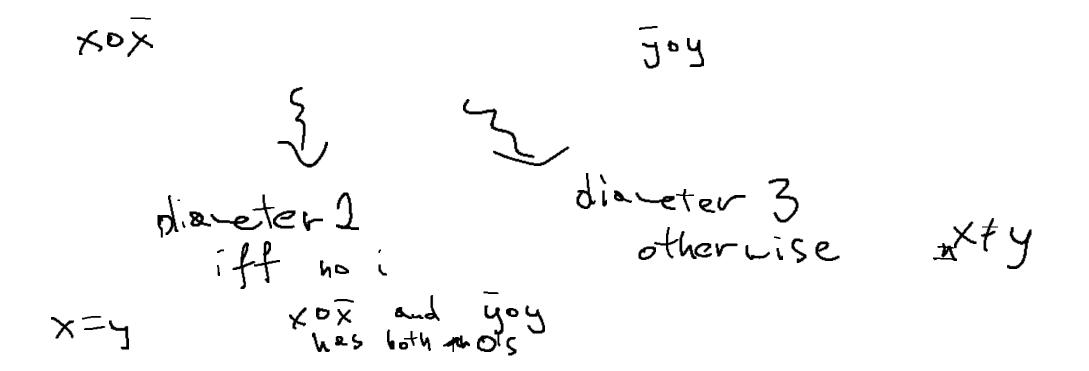


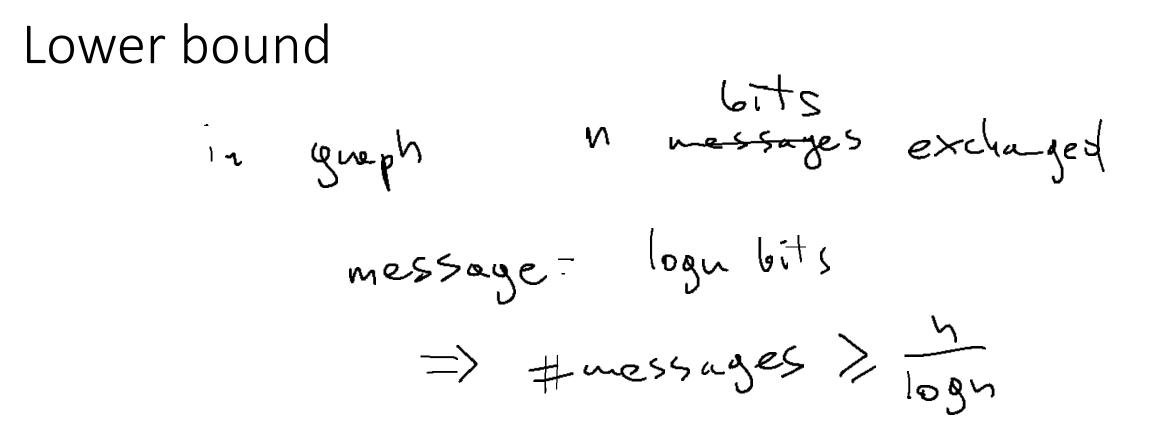




Mapping to graph $X_{, \neg}$

Lemma 11.23. Let x and y be $\frac{q^2}{2}$ -bit strings given to Alice and Bob.¹ Then graph $G := G_{x \circ \overline{x}} \underbrace{f_{y \circ y}} \in \mathcal{G}$ has diameter 2 if and only if x = y.





Lower bound

Randomized complexity of equality

Algorithm 11.25 Randomized evaluation of EQ.

- 1: Alice and Bob use public randomness. That is they both have access to the same random bit string $z \in \{0,1\}^k$
- 2: Alice sends bit $a := \sum_{i \in [k]} x_i \cdot z_i \mod 2$ to Bob
- 3: Bob sends bit $b := \sum_{i \in [k]} y_i \cdot z_i \mod 2$ to Alice
- 4: if $a \neq b$ then

5: we know
$$x \neq y$$

6: end if

$$a := \sum_{i} X_{i} Z_{i} \mod Z \xrightarrow{-} 0$$

$$b := \sum_{i} Y_{i} Z_{i} \mod 2$$