Wireless communication
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Algorithm 12.1 Slotted Aloha
. Every node v executes the following code:

1
2: repeat

3:  transmit with probability 1/n

4: until one node has transmitted alone
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Algorithm 12.5 Initialization with Collision Detection

1
2
3:
4

[ua §

=1

. Every node v executes the following code:

: nextld : =0
myBitstring .= * < initialize to empty string
. bitstringsToSplit := [*'] < a queue with sets to split

while bitstringsToSplit is not empty do
b := bitstringsToSplit.pop()

repeat
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10:
11:
12:
13:
14:
15:
16:
17:
18:

repeat
if b = myBitstring then
choose r uniformly at random from {0, 1}
in the next two time slots:
transmit in slot r. and listen in other slot
else
it is not my bitstring, just listen in both slots
end if
until there was at least 1 transmission in both slots
if b = myBitstring then
myBitstring :— myBitstring & P < append bit r
end if
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10:
11:
12:
13:
14:
15:
16:
17:
18:

repeat
if b = myBitstring then
choose r uniformly at random from {0, 1}
in the next two time slots:
transmit in slot r, and listen in other slot
else
it is not my bitstring, just listen in both slots
end if
until there was at least 1 transmission in both slots
if b = myBitstring then
myBitstring :— myBitstring + r < append bit r
end if
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- end while

for r € {0,1} do
if some node u transmitted alone in slot » then
node u becomes ID nexrtld and becomes passive

nextld :W
else
,ﬁfsh'infﬁ]’"m}j‘pa’Ef.push(hM
end if T
end for
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for » € {0,1} do
if some node u transmitted alone in slot r then
node u becomes ID nextld and becomes passive
nextld := nextld + 1
else
bitstringsToSplit.push(b+ r)
end if
end for
end while




Theorem 12.6. Algorithm 12.5 correctly initializes n nodes in expected time

O(n).



Initialization with no collision detection but with a leader

S = wedes Pt Frand Y

nodes in S transmit | nodes in S U {/} transmit
S|=0 X v
S| =1,5={/} v v
S| =1,5#{/l} v X
S| >2 X X

Table 12.7: Using a leader to distinguish between noise and silence: X represents
noise/silence, ¢ represents a successful transmission.
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Algorithm 12.10 Uniform leader election

1: Every node v executes the following code:

s P i 7

: = . C K

4: transmit with probability p:= 1/2F A

5 if node v was the only node which transmitted then P = "y -9

6: v becomes the leader Wi
7 break ('V\). Z; . 4_2

8 end if 1 N ™

9: end for - J.

10: end for e_l == %@:
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Theorem 12.11. By using Algorithm 12.10 it is possible to elect a leader w.h.p.
in O(log® n) time slots if n is not known.
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Algorithm 12.12 Uniform leader election with CD

1: Every node v executes the following code:
2: repeat

3:  transmit with probability %

if at least one node transmitted then

5 all nodes that did not transmit quit the protocol
6: end if

7: until one node transmits alone
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Algorithm 12.12 Uniform leader election with CD

. Every node v executes the following code:

repeat A
transmit with probability
\if at least one node transmitted then

Ll

all nodes that did not transmit quit the protocol
end if

NS

until @de t.gnsmits‘iﬁcb

\

>< Sl







Theorem 12.13. With collision detection we can elect a leader using Algorithm

12.12 w.h.p. i@(log nDtime slots.
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Algorithm 12.14 Fast uniform leader election

17:
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1:
2:

10:
11:
12:
13:
14:
15:
16:

i:=1
repeat
ii=2-1
transmit with probability 1/2°

,Lu_lt_i.l,m.nw
{End of Phase 1}

[ = 21/2
u = 2"
while [ +1 < u do
j =45 |
transmit with probability 1/27
if no node transmitted then
wi=j
else
[:=j
end if
end while

{End of Phase 2}
k:=u
repeat
transmit with probability 1/2*
if no node transmitted then
k=k—1
else
E=k+1
end if
until exactly one node transmitted

|Day Loy




J

‘ 1: 2:=1
—> 2: repeat
3: \E;:: 21 |
4:  transmit with probability 1/2°
5: until no node transmitted

{End ‘t::f‘P hase 1}
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Ei:\_l‘;:: 2t/2
7oL, = 2"

8 while !l +1 < u do

: s [+

10:  transmit with probability 1

ZL

11:  if no node transmitted then

12: @
13: else

14; L=
15: end if

16: end while

{End of Phase 2}
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17: k:=u —
18: repeat
19:  transmit with probability 1/2%
20:  if no node transmitted then o
21: k=FkF—1 o T
22: else W&\K
23: k:i=k+1
24:  end if o
25: until F:{actly one node transmiici) | P
IS -
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Lemma 12.15. If j > logn + loglogn, then Pr[X > 1] < mgn

Proof. The nodes transmit with probability 1/27 < 1/2legntloglogn _ ~ 1.:,1g ~.
The expected number of nodes transmitting is £[X] = — logn Using Markov’s
inequality (see Theorem 12.27) yields Pr[X > 1] < Pr[X > F[X]- log n| <

1
N

logn-®



Lemma 12.16. If j < logn — loglogn, then P[X = 0] < L.

Proof. The nodes transmit with probability 1/27 > 1/2lcgn—logloen _ m%.

Thus, the probability that a node is silent is at most 1 — lo_%. Hence, the
probability for a silent time slot, i.e., Pr[X = 0], is at most (1 — m%)” —
—logn _ 1 ]
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Lemma 12.19. Let v be such that 2°=! < n <2V, d.e., v ~logn. Ifk > v +2,
then Pr(X > 1] < 1.

Proof. Markov’s inequality yields
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Lemma 12.20. If k < v — 2, then P[X = 0] < 1.

Proof. A similar analysis is possible to upper bound the probability that a
transmission fails if our estimate is too small. We know that & < v — 2 and thus
1 n gv—1 1

PrX =0] = (1 - —) <eTF <e T <e i<
ok



Lemma 12.21. Ifv—2 < kE < v+ 2, then the probability that exactly one node
transmats 1s constant.

Proof. The transmission probability is p = m = O(1/n), and the lemma
follows with a slightly adapted version of Theorem 12.2.
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Lemma 12.22. With pmbabﬂz’t@we find a leader in phase S@g ngD

time.

Proof. For any k, because of Lemmas 12.19 and 12.20, the random walk of the
third phase is biased towards the good area. One can show that in O(loglogn)
steps one gets Q(loglogn) good transmissions. Let Y denote the number of
times exactly one node transmitted. With Lemma 12.21 we obtain F[Y] =
Q(loglogn). Now a direct application of a Chernoff bound (see Theorem 12.28)

yvields that these transmissions elect a leader with probability 1 — loé —~. ]




Theorem 12.24. Any uniform protocol that elects a leader with probability of

at least 1 — %t must run for at least t time slots.

- - 1 = loglogu

System with two nodes:
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