Wireless communication

algo21

Radio channel access

TDMA

Algorithm 12.1 Slotted Aloha

- 1: Every node v executes the following code:
- $2:$ repeat
- transmit with probability $1/n$ $3:$
- 4: until one node has transmitted alone

$$
Pr[X = 1] = n \cdot \frac{1}{n} \cdot \left(1 - \frac{1}{n}\right)^{n-1} \approx \frac{1}{e},
$$

Initialization

$$
\Rightarrow
$$
 $\frac{a}{b}\sqrt{b-a} + b a$ $\frac{a}{b}\sqrt{c-a} = \frac{a}{b}$

Collision detection

1) junk) no reudable
but $2)$ 72 trous— τ +

Algorithm 12.5 Initialization with Collision Detection

- 1: Every node v executes the following code:
- 2: $nextId := 0$
- 3: $myBitstring :=$
- \triangleleft initialize to empty string
- 4: bitstrings $ToSplit := [\text{``}]$ \triangleleft a queue with sets to split
- 5: while *bitstringsToSplit* is not empty do
- $b := bitstringsToSplit.pop()$ $6:$
- repeat $7:$

 $7:$

8:

9:

 $10:$

 $11:$

 $12:$

 $13:$

14:

 $15:$

16:

 $17:$

18:

- if $b = myBitstring$ then 8:
- choose r uniformly at random from $\{0, 1\}$ $9:$
- in the next two time slots: $10:$
- transmit in slot r , and listen in other slot $11:$
- else $12:$
- it is not my bitstring, just listen in both slots $13:$
- end if $14:$
- until there was at least 1 transmission in both slots $15:$
- if $b = myBitstring$ then $16:$
- $myBits string := myBits string + r$ append bit r $17:$
- end if $18:$


```
for r \in \{0,1\} do
19:
```
- if some node u transmitted alone in slot r then 20:
- node u becomes ID $nextId$ and becomes passive $21:$
- $nextId := nextId + 1$ $22:$
- $_{\rm else}$ 23:
- $bits strings ToSplit.push(b + r)$ 24:
- end if $25:$
- end for 26:
- 27: end while

Theorem 12.6. Algorithm 12.5 correctly initializes n nodes in expected time $\mathcal{O}(n)$.

Initialization with no collision detection but with a leader
 $S = \text{index}$ that trans

Table 12.7: Using a leader to distinguish between noise and silence: χ represents noise/silence, \checkmark represents a successful transmission.

 No CD : trans-ission,

noise

· Single

Quare

Algorithm 12.10 Uniform leader election 1: Every node v executes the following code: 2: for $k = 1, 2, 3, \dots$ do for $i = 1$ to ck do $3:$ $C \cdot K$ transmit with probability $p := 1/2^k$ $4:$ if node v was the only node which transmitted then $5:$ v becomes the leader $6:$ break $7:$ end if 8: end for $9:$ $10:$ end for

Uniform Leader election

 $\hat{\mathbf{v}}$

 P^{bb} of k for lunes:
 $(\frac{1}{2})^{c\log n} \approx -$

 $\frac{b \times 2^{k}}{n-1}$

 $\binom{n}{1} \cdot \frac{2}{n} \cdot \left(1 - \frac{2}{n}\right)^{n-1}$

Theorem 12.11. By using Algorithm 12.10 it is possible to elect a leader w.h.p. in $\mathcal{O}(\log^2 n)$ time slots if n is not known.

 k a $log n$ $C, 2C, 3C, 4C, ...$ $k \cdot c$ = $C \cdot (1+2+3+...+k) = C \cdot k(k-1) = O(k^2n)$ Algorithm 12.12 Uniform leader election with CD

- 1: Every node v executes the following code:
- $2:$ repeat
- transmit with probability $\frac{1}{2}$ $3:$
- if at least one node transmitted then $4:$
- all nodes that did not transmit quit the protocol $5:$
- end if $6:$
- 7: until one node transmits alone

J

Algorithm 12.12 Uniform leader election with CD

- 1: Every node v executes the following code:
- $2:$ repeat
- $3:$
- transmit with probability \bigotimes \bigotimes \bigotimes f if at least one node transmitted then $4:$
- all nodes that did not transmit quit the protocol $5:$
- lend if $6:$
- 7: until δ ne node transmits alone

Theorem 12.13. With collision detection we can elect a leader using Algorithm 12.12 w.h.p. in $\mathcal{O}(\log n)$ time slots.

$$
k
$$
 nodes 1
 x + transuitting nodes

$$
Pr\left[1 \le X \le \left\lceil \frac{k}{2} \right\rceil\right] = P\left[X \le \left\lceil \frac{k}{2} \right\rceil\right] - Pr[X = 0] \ge \frac{1}{2} - \frac{1}{2^k} \ge \frac{1}{4}.
$$

$$
x=0 - 40
$$
 prages
\n $x = 0 - 40$ frages
\n $x = 0 - 40$ frages
\n $x = 0$

Algorithm 12.14 Fast uniform leader election

```
1: i := 11 Dg loy n
 2: repeat
    i := 2 \cdot i3:transmit with probability 1/2^i4:5: until no node transmitted
   \{End\ of\ Phase\ 1\}6: l := 2^{i/2}7: u := 2^i8: while l+1 < u do
    j := \lceil \frac{l+u}{2} \rceil9:transmit with probability 1/2^j10:if no node transmitted then
11:12:u := j13:else
     l := j14:end if
15:16: end while
   {End of Phase 2}17: k := u18: repeat
    transmit with probability 1/2^k19:if no node transmitted then
20:k:=k-121:22:_{\rm else}k := k + 123:
     end if
24:
25: until exactly one node transmitted
```


 $p = \frac{1}{n^2}$ $1 - (1 - \frac{1}{h^{2}})^{n}$ $= 1 - (1 - \frac{1}{n^{2}})^{n^{2}/n} \approx$ $= 1 - \left(\frac{1}{2}\right)^{1/n} \approx 0$

 $\overline{2}$ $\overline{2\pi}$ 6: $\overline{l} = 2^{i/2}$
7: $\underline{u} := 2^i$ 8: while $l+1 < u$ do $j := \lceil \frac{l+u}{2} \rceil$ 9: **DN** Silence Silence transmit with probability $1/2^j$ $10:$ if no node transmitted then $11:$ $u := j$ $12:$ $_{\rm else}$ $13:$ $l := j$ 14: end if $15:$ M 16: end while ${End of Phase 2}$

17: $k := u$

18: repeat

- transmit with probability $1/2^k$ $19:$
- if no node transmitted then $20:$
- $k:=k-1$ $21:$
- else $22:$
- $k:=k+1$ 23:
- end if 24:

25: until exactly one node transmitted.

rondo
Wolk pbb $\frac{1}{2}k$ 20

Lemma 12.15. If $j > \log n + \log \log n$, then $Pr[X > 1] \le \frac{1}{\log n}$.

Proof. The nodes transmit with probability $1/2^j < 1/2^{\log n + \log \log n} = \frac{1}{n \log n}$. The expected number of nodes transmitting is $E[X] = \frac{n}{n \log n}$. Using Markov's inequality (see Theorem 12.27) yields $Pr[X > 1] \leq Pr[X > E[X] \cdot \log n] \leq$ $rac{1}{\log n}$.

Lemma 12.16. If $j < \log n - \log \log n$, then $P[X = 0] \leq \frac{1}{n}$.

Proof. The nodes transmit with probability $1/2^j > 1/2^{\log n - \log \log n} = \frac{\log n}{n}$. Thus, the probability that a node is silent is at most $1 - \frac{\log n}{n}$. Hence, the probability for a silent time slot, i.e., $Pr[X = 0]$, is at most $(1 - \frac{\log n}{n})^n$ $e^{-\log n} = \frac{1}{n}.$

Lemma 12.19. Let v be such that $2^{v-1} < n \le 2^v$, i.e., $v \approx \log n$. If $k > v + 2$, then $Pr[X > 1] \leq \frac{1}{4}$.

Proof. Markov's inequality yields

$$
Pr[X > 1] = Pr\left[X > \frac{2^k}{n}E[X]\right] < Pr[X > \frac{2^k}{2^v}E[X]] < Pr[X > 4E[X]] < \frac{1}{4}.
$$

Lemma 12.20. If $k < v - 2$, then $P[X = 0] \le \frac{1}{4}$.

Proof. A similar analysis is possible to upper bound the probability that a transmission fails if our estimate is too small. We know that $k \le v - 2$ and thus

$$
Pr[X=0] = \left(1 - \frac{1}{2^k}\right)^n < e^{-\frac{n}{2^k}} < e^{-\frac{2^{v-1}}{2^k}} < e^{-2} < \frac{1}{4}.
$$

 $\overline{}$

Lemma 12.21. If $v-2 \le k \le v+2$, then the probability that exactly one node transmits is constant.

Proof. The transmission probability is $p = \frac{1}{2^{v \pm \Theta(1)}} = \Theta(1/n)$, and the lemma follows with a slightly adapted version of Theorem 12.2.

 \Box

Lemma 12.22. With probability $1-\frac{1}{\log n}$ we find a leader in phase $3(n\mathcal{O}(\log \log n))$ time.

Proof. For any k, because of Lemmas 12.19 and 12.20, the random walk of the third phase is biased towards the good area. One can show that in $\mathcal{O}(\log \log n)$ steps one gets $\Omega(\log \log n)$ good transmissions. Let Y denote the number of times exactly one node transmitted. With Lemma 12.21 we obtain $E[Y] =$ $\Omega(\log \log n)$. Now a direct application of a Chernoff bound (see Theorem 12.28) yields that these transmissions elect a leader with probability $1 - \frac{1}{\log n}$.

Theorem 12.24. Any uniform protocol that elects a leader with probability of at least $1 - \frac{1}{2}^t$ must run for at least t time slots. $t = loglog$

System with two nodes:

 $1 - (\frac{1}{2})^{\log log_{10}} = 1 - \frac{1}{log_{11}}$

$$
Pr[X = 1] = 2p \cdot (1 - p) \le \frac{1}{2}
$$

$$
\left(\frac{2}{1}\right) \cdot p \cdot \left(1 - p\right)
$$

