Graph labeling

•

Algo21

Goal of labels: finding neighbors and distance

Are two nodes adjacent?

What is the distance between two nodes?

...?

Adjacency in a tree

2log(n) bit labels:

- log(n) bit ID for each node
- label= (node ID, parent's ID)

Labeling schemes for general graphs

The scheme should be applicable to any graph

Is it possible to get an efficient solution?

Lower bound:

Labels need to have the length $\Omega(n)$

Labeling schemes for general graphs

The scheme should be applicable to any graph

Is it possible to get an efficient solution?

Lower bound:

Labels need to have the length $\Omega(n)$

Simple n-nodes ~n $\left(\begin{array}{ccc} b_{1} & b_{2} \end{array} \right) \left(\begin{array}{ccc} b_{1} & b_{2} \end{array} \right)$ label $b_j = 1 \iff (v_j, v_i) \in E$

Arguments for lower bound

A Labeling for non-isomorphic graphs must be different

- If label length is s, then there are 2^s different labels
- Each labeling takes a subset of labels
- Two subsets cannot be taken for non-isomorphic graphs

$$\#_{gup} \leq \left(\begin{pmatrix} 2^{5} \\ n \end{pmatrix} \right) = \left(\begin{array}{c} 2^{5} + n - 1 \\ n \end{array} \right)$$

• number of nonisomorphic graphs

#grophs
$$\geqslant 2^{\binom{n}{2}}/n!$$

Arguments for lower bound

A Labeling for non-isomorphic graphs must be different

) If label length is s, then there are 25 different labels

Each labeling takes a subset of labels

• Two subsets cannot be taken for non-isomorphic graphs

$$\frac{\text{Hompk}}{(n)} \leq \left(\binom{2^{5}}{n}\right) = \left(\begin{array}{c}2^{5}+n-1\\n\end{array}\right) \approx \left(\begin{array}{c}2^{7}\\n\end{array}\right)$$

)(2/

• number of nonisomorphic graphs

n out of 2^S labels

N

1/ n! 2 L permitations

 $(2^{S})^{n} > 2^{n/2}$

Ancestry question in a tree

labelling based on DFS

for each node – index in DFS search

label= (node index, highest index in a subtree)

(2,10)if 255510 (5,?)

Naïve distance labeling

Algorithm 14.5 Naïve-Distance-Labeling(T)

- 1: Let l be the label of the root r of T
- 2: Let T_1, \ldots, T_{δ} be the sub-trees rooted at each of the δ children of r
- 3: for $i = 1, \ldots, \delta$ do
- 4: The root of T_i gets the label obtained by appending i to l
- 5: Naïve-Distance-Labeling (T_i)
- 6: end for

distance

. .

Naïve distance labeling

THM. This is an O(n log(n)) labeling

logy 2 John O(n) by identifier 2 John O(n) 0(n logn)

Algorithm 14.7 Heavy-Light-Decomposition(T)

- 1: Node r is the root of T
- 2: Let T_1, \ldots, T_{δ} be the sub-trees rooted at each of the δ children of r
- 3: Let T_{max} be a largest tree in $\{T_1, \ldots, T_{\delta}\}$ in terms of number of nodes
- 4: Mark the edge (r, T_{max}) as heavy
- 5: Mark all edges to other children of r as light
- 6: Assign the names $1, \ldots, \delta 1$ to the light edges of r
- 7: for $i = 1, \ldots, \delta$ do
- 8: Heavy-Light-Decomposition (T_i)
- 9: end for

1 1 12 $\overline{\ }$ (#edges Meany edges photo (0, node 2, 2, node 1, 0, node 1, 0, node 1)

THM. This is an O(log²n) distance labeling

1. heavy paths, connected via light edges

THM. This is an O(log²n) distance labeling

- 1. heavy paths, connected via light edges
- 2. Lemma: The size of a subtree of a light node is at most ½ of the size of the parent

シミラ

THM. This is an Q(log²n) distance labeling

- 1. heavy paths, connected via light edges
- 2. Lemma: The size of a subtree of a light node is at most $\frac{1}{2}$ of the size of the parent

16 Qu

my.

3. Corollary: on a path at most log(n) light nodes

1 · Bon · J. · J.

Task: For any two nodes compute their distance

0

n - millions

Road networks

Algorithm 14.9 Naïve-Hub-Labeling(G)

1: Let P be the set of all n^2 shortest paths

2: while $P \neq \emptyset$ do

- 3: Let h be a node which is on a maximum number of paths in P
- 4: for all paths $p = (u, \ldots, v) \in P$ do
- 5: if h is on p then
- 6: Add h with the distance dist(u, h) to the label of u
- 7: Add h with the distance dist(h, v) to the label of v
- 8: Remove p from P
- 9: end if
- 10: end for
- 11: end while

• •

Road networks

Algorithm 14.9 Naïve-Hub-Labeling(G)

1: Let P be the set of all n^2 shortest paths

2: while $P \neq \emptyset$ do

- 3: Let h be a node which is on a maximum number of paths in P
- 4: for all paths $p = (u, \ldots, v) \in P$ do
- 5: if h is on p then
- 6: Add h with the distance dist(u, h) to the label of u
- 7: Add h with the distance dist(h, v) to the label of v
- 8: Remove p from P
- 9: end if
- 10: end for

11: end while

. .

Road networks

Algorithm 14.10 Hub-Labeling(G)

- 1: for $i = 1, ..., \log D$ do
- 2: Compute the shortest path cover S_i
- 3: end for
- 4: for all $v \in V$ do
- 5: Let $F_i(v)$ be the set $S_i \cap B(v, 2^i)$
- 6: Let F(v) be the set $F_1(v) \cup F_2(v) \cup \ldots$
- 7: The label of v consists of the nodes in F(v), with their distance to v8: end for

• •

Névigation opti-ization road traffic --- hord

. .