Graph labeling

Algo21



Goal of labels: finding neighbors and distance
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Answer based on labels of the nodes only:
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Adjacency in a tree

2log(n) bit [abels:
* log(n) bit ID for each node

* |[abel= (node ID, parent’s ID)
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Labeling schemes for general graphs

g.\ M‘D\C
The scheme should be applicable to any graph
. . . | h—wodel
s it possible to get an efficient solution?
V., .. Ve
1) 4
\/- .
Lower bound: eloe) L
(bﬁ |b2|-\ b"\>
Labels need to have the length Q(n)
_ b:z{_ (— V4 v~>é—':'_‘,
" J ( J1



Labeling schemes for general graphs

g.\ M‘D\C
The scheme should be applicable to any graph
. . . | h—wodel
s it possible to get an efficient solution?
V., .. Ve
1) 4
\/- .
Lower bound: eloe) L
(bﬁ |b2|-\ b"\>
Labels need to have the length Q(n)
_ b:z{_ (— V4 v~>é—':'_‘,
" J ( J1

s> 5



Arguments for lower bound

A) Labeling for non-isomorphic graphs must be different
* If label length is s, then there are 25 different labels
* Each labeling takes a subset of labels
* Two subsets cannot be taken for non-isomorphic graphs
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Arguments for lower bound

/{) Labeling for non-isomorphic graphs must be different

27 If label length is s, then there are Ddifferent labels

7) Each labeling takes a subset of labels N\ 0\L+ d_qf Q_Q |0&)Q,\§

* Two subsets cannot be taken for non-isomorphic graphs
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Ancestry question in a tree
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labelling based on DFS
for each node — index in DFS search

label= (node index, highest index in a subtree)
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Naive distance labeling

Algorithm 14.5 Naive-Distance-Labeling(T)

1: Let [ be the label of the root r of T

2: Let T%,...,T5 be the sub-trees rooted at each of the § children of r
3: fori=1,....6 do

4:  The root of T; gets the label obtained by appending i to [

5: | Naive-Dis vheling (75

6: end for
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Naive distance labeling

THM. This is an O(n log(n)) labeling
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Heavy-light decomposition

Algorithm 14.7 Heavy-Light-Decomposition(T')

1: Node r is the root-of T
2: Let TY....,Ts be the sub-trees rooted at each of the § children of r
3: Let Tinax be a largest tree in {77,...,7T5} in terms of number of nodes
4: Mark the edge (r, Tiax ) as heavy
5: Mark all edges to other children of r as light
6: Assign the names 1,...,0 — 1 to the light edges of r
.?: fori=1,....46 do
8:  Heavy-Light-Decomposition(T;)
9: end for
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Heavy-light decomposition
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Heavy-light decomposition

THM. This is an O(log?n) distance labeling

1. heavy paths, connected via light edges



Heavy-light decomposition

THM. This is an O(log?n) distance labeling
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1. heavy paths, connected via light edges

2. Lemma: The size of a subtree of a light node is at most % of the size of the parent
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Heavy-light decomposition

THM. This is an O(log?n) distance labeling
—

1. heavy paths, connected via light edges

2. Lemma: The size of a subtree of a light node is at most % of the size of the parent

3. Corollary: on a path at mosight nodes
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@networks — navigatioD

Task: For any two nodes compute their distance
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Road networks

Algorithm 14.9 Naive-Hu)-Labeling(G)

1: Let P be the set of all n° shortest paths

2: while P #£ () do

3:  Let /i be a node which is on a maximum number of paths in P

for all paths p = (u,..

if h is on p then

Remove p from P
end if
10:  end for
11: end while
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Add h with the distance dist(u, i) to the label of u
Add h with the distance dist(h,v) to the label of v
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Road networks

Algorithm 14.9 Naive-Hub-Labeling(G)

1: Let P be the set of all n? shortest paths
2: while P # ) do
3:  Let h be a node which is on a maximum number of paths in P

4:  for all paths p= (u, ..., v) € P do

5 if h is on p then

i} Add h with the distance dist(u, i) to the label of u
7 Add h with the distance dist(h,v) to the label of v
N Remove p from P

9 end if

10: end for
11: end while







Shortest paths covers

S is a shortest paths cover if it contains at least one node
on each shortest path

e

S; is a cover that takes into account the paths of length
between 21 and 2




Road networks

Algorithm 14.10 Hub-Labeling(G)

1: fori=1,....loz ) do
Compute the shortest path cover S;
end for
for all do
Let Fj(v) be the set S; N B(v,2")
Let F'(v) be the set Fl( ) U Fa(v) U
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7:  The lqhel of v consists of the nodes in Fl[i:) with their distance to v
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