Simple tree algorithms

Mku, PWr 2021

é?'\s‘kh go(" A»

oo
vt

o

COMIQ&ZVV(_D- ’_\:lMZ
MU v ey OQ— \M\Qgsfu‘beg

lo cod LZV(D\—\/lQCg&C

= w248 R Cer\—\p\uQX :+> o % broadga st

@o &J[&S"’ b Mg ‘l’m&o%&%

Algorithm 2.9 Flooding

1: The source (root) sends the message to all neighbors.
2: Each other node v upon receiving the message the first time forwards the
[message to all (other) neighbors.
3: Upon later receiving the message again (over other edges), a node can dis-
card the message.

O\SLX«(&WOV“B ! ovﬁu\/ Q% V\qQSC&LS@S \ S &vto['k'l/u.‘>

o A:\WQ,) A-\ O z'\’?v—

. Ne.,$$43c,f e eé“ﬁc' {92
me.sy:)cs

Hodses « 2

¢ &AAQA \6-\“\6:

‘% \ oyﬁ’ Ye —es544C
g‘fow\ e P Hew A
'S Wiy pa-vea(" I 3 po.\.w.‘“.o) “ree

Co N \/Q\/O\Q/(,(LgJ\‘

Algorithm 2.10 Echo

1: A leave sends a message to its parent.
2: If an inner node has received a message from each child, it sends a message
to the parent.

Brrosd - Pivl= searchy ERS

Algorithm 2.11 Dijkstra BFS

1: We start with T, which is the root plus all direct neighbors of the root. We

start with phase p = 1:

2: repeat

3: The root starts phase p by broadcasting “start p” within 7).

4: When receiving “start p” a leaf node u of T, (that is, a node that was
newly discovered in the last phase) sends a “]0 p + 17 message to all
quiet neighbors. (A neighbor v is quiet if u has not yet “talked” to v.)

5: A node v receiving the first “join p+1” message replies with “ACK” and
becomes a leaf of the tree T},

6: A node v receiving any further “join” message replies with “NACK”.

7: The leaves of T, collect all the answers of their neighbors; then the leaves
start an echo algorithm back to the root.

8: When the echo process terminates at the root, the root increments the

phase

9: until there was no new node detected

‘Sel “ P(

o e

Tiwme @@2) D-digumete
Hegg@,u}a‘- D(\m% W'D>
& D phsteS
\2ove 45
e 22&-@
22— — 2

waSSi N. o eAssq,

fat

A o NCK

2. bvesdcoesT E ec Mo

2w+ D

—

e \lwp — Tovd

Algorithm 2.13 Bellman-Ford BFS

‘ 1: Each node u stores an integer d,, which corresponds to the distance from u
to the root. Initially dyqot = 0, and d,, = oo for every other node wu.
2: The root starts the algorithm by sending “1” to all neighbors.
3: if a node u receives a message “y” with y < d, from a neighbor v then
‘4: node u sets d,, ==y
5. node u sends “y + 1”7 to all neighbors (except v)
6: end if

hqu‘o
A
A z1;

® O\V\~3 éb\'lvel"b _\:\\M(—eb" V\Q,g$0~'3€,§
= SYN cavvec

@ Q\/Q \/\+ \/b.,\\j \}SQV\ "\'EV \-.\\—\ .:k.e

+00

ved E.A‘XC. ‘~~\-\-\1 l..:\v.:\“\ u..e\\k'l'

Clafwa
blue GA(\Z_ waAt 6‘\0"&
to te wan ST

E\\’\Q/ QQ\O\QQ/_

ved eé‘\(. WI-\-\'\, l..:\\«:\“\ we\‘td_

C,la.\lw\
blue et\(\e wat (7‘\0"&
to te wan ST

Lemma 2.17. For a given weighted graph G (such that no two weights are the
same), let T denote the MST, and T' be a fragment of T'. Then the blue edge

of T' is also part of T, i.e., T" Ub(T") C T.

Algorithm 2.18 GHS (Gallager—Humblet—Spira)

-1: Initially each node is the root of its own fragment. We proceed in phases:

2: repeat
~3: All nodes learn the fragment IDs of their neighbors.

4: The root of each fragment uses flooding/echo in its fragment to determine
the blue edge b = (u,v) of the fragment.

5. The root sends a message to node u; while forwarding the message on the
path from the root to node u all parent-child relations are inverted {such
that u is the new temporary root of the fragment }

6: node u sends a merge request over the blue edge b = (u,v).

7. if node v also sent a merge request over the same blue edge b = (v, u)
then

8: either v or v (whichever has the smaller ID) is the new fragment root

9: the blue edge b is directed accordingly

10: else
11: node v is the new parent of node u
L—12: end if
13: the newly elected root node informs all nodes in its fragment (again using

flooding/echo) about its identity

14: until all nodes are in the same fragment (i.e., there is no outgoing edge)

& \D

VoG lc.o%u\v.\ o wnu=lerr My VoY o woda§

V“D\A-"\& N lbvo «ACQSST + eho + ve0v50\r§\1)

