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Independent set in a graph
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Greedy sequential algoritrlrp
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MIS via graph coloring
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Corollary 7.5. Given a coloring algorithm that runs in time 1" and needs C
colors, we can construct a MIS in time I+ C'.
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Algorithm 7.6 Fast MIS

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
l 1) Each node v marks itself with probability ﬁ(w}-’ where d(v) is the current

degree of v.

2) If no higher degree neighbor of v is also marked, node v joins the MIS. If
‘ a higher degree neighbor of v is marked, node v unmarks itself again. (If the

neighbors have the same degree, ties are broken arbitrarily, e.g., by identifier).
I 3) Delete all nodes that joined the MIS and their neighbors, as they cannot

join the MIS anymore.




Correctness
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Lemma 7.7 (Joining MIS). A rode v dnine the MIS jp Step 2 with probability
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Lemma 7.8 (Good Nodes). A node v is called good if

> s e
2d(w) — 6

weN (v)

where N (v) is the set of neighbors of v. Otherwise we call v a bad node. A
good node will be removed in Step 3 with probability y==



Case 1: There is a neighbor of degree 2 ow 1




Case 2 : all neighbors have degree >2
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Good nodes die out

We cannot prove that there is always a certain fraction of good nodes



Lemma 7.9 (Good Edges). An edge ¢ = (u,v) s called bad if both u and v
are bad; else the edge is called good. The following holds: At any time at least

half of the edges are good.

\V4 L'l'-tO‘
é

W bad
b.d
%-.o\

- cw o
w



Auxiliary graph -- directed edges towards higher degree




Lemma 7.10. A bad node has outdegree (number of edges pointing away from
bad node) at least twice its indegree (number of edges pointing towards bad node).
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By contradiction, let more than 1/3 neighbors have not smaller degree
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Corollary: number of edges pointing to bad nodes is at most half
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Theorem 7.11 (Analysis of Algorithm 7.6). Algorithm 7.6 terminates in ex-
pected time O(logn).




Algorithm 7.12 Fast MIS 2

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v chooses a random value r(v) € [0,1] and sends it to its
neighbors.
" 2) If r(o) < riw) tor au neiguvuis w < N(v), node v enters the MIS and
informs its neighbors.
3) If v or a neighbor of v entered the MIS, v terminates (v and all edges
| adjacent to v are removed from the graph), otherwise v enters the next phase.




Lemma 7.14 (Edge Removal). In a single phase, we remove at least half of

thegtu s in expectation.
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Suppose that a node v joins the MIS in this phase, i.e., 7(v) < r(w) for all
neighbors w € N(v). If in addition we have r(v) < r(x) for all neighbors = of a
neighbor w of v, we call this event (#—#). The probability of event (v — w)
is at least 1/(d(v) + d(w)), since d(v) + d(w) is the maximum number of nodes
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Matching in a graph
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Independent set in line graph ---- matching in the graph
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Algorithm 7.20 General Graph Coloring

1:

2:

Given a graph G = (V. E) we virtually build a graph G’ = (V', E’) as
follows:
Every node v € V clones itself d(v)+1 times (v, ..., vap) € V'), d(v) being
the degree of v in G,

. The edge set E' of G’ is as follows:

4: First all clones are in a clique: (v;,v;) € E', for all v € V and all 0 < i <

[ §

j < d(v)

. Second all i** clones of neighbors in the original graph G are connected:

(ui,v;) € £, for all (u,v) € F and all 0 < i < min(d(u), d(v)).

: Now we simply run (simulate) the fast MIS Algorithm 7.12 on G.
. If node v; is in the MIS in 7, then node v gets color 1.



















