Locality

Algo lecture 2021, M.Kutyłowski

Coloring problem

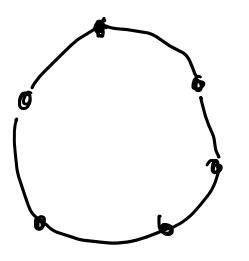
log*(n)+O(1) time algorithm already discussed for trees

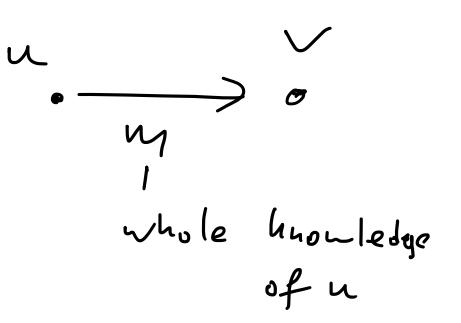
PROBLEM: can we do any better?

A LOWER BOUND: there is no algorithm that runs faster than ...

Model:

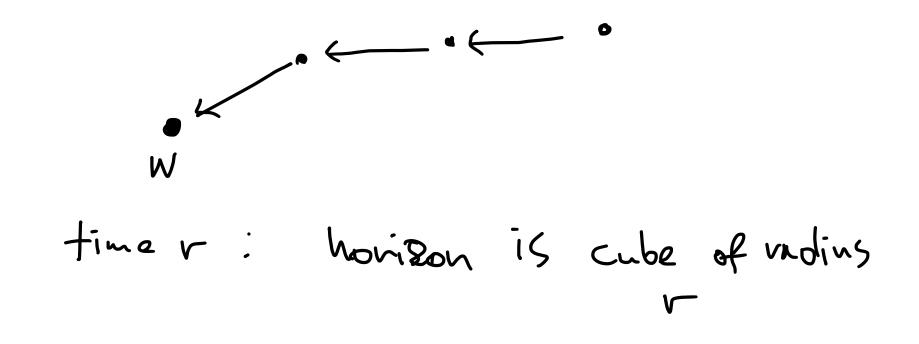
- + Unbounded communication
- + Unbounded local communication
- Deterministic
- Ring architecture



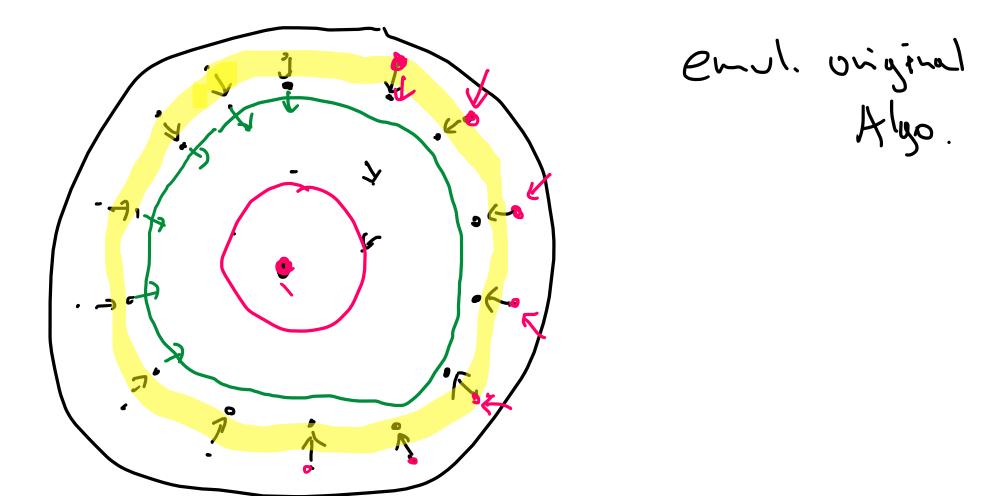


Algorithm 8.1 Synchronous Algorithm: Canonical Form

In r rounds: send complete initial state to nodes at distance at most r
// do all the communication first
Compute output based on complete information about r-neighborhood
// do all the computation in the end



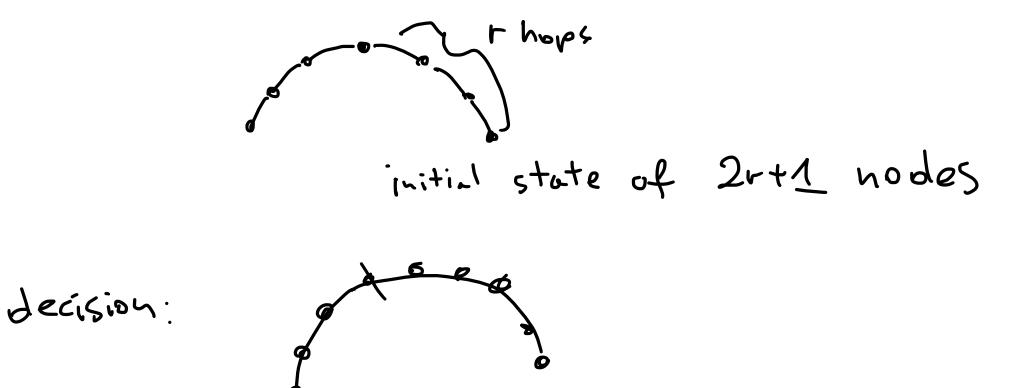
Lemma 8.2. If message size and local computations are not bounded, every deterministic, synchronous r-round algorithm can be transformed into an algorithm of the form given by Algorithm 8.1 (i.e., it is possible to first communicate for r rounds and then do all the computations in the end).



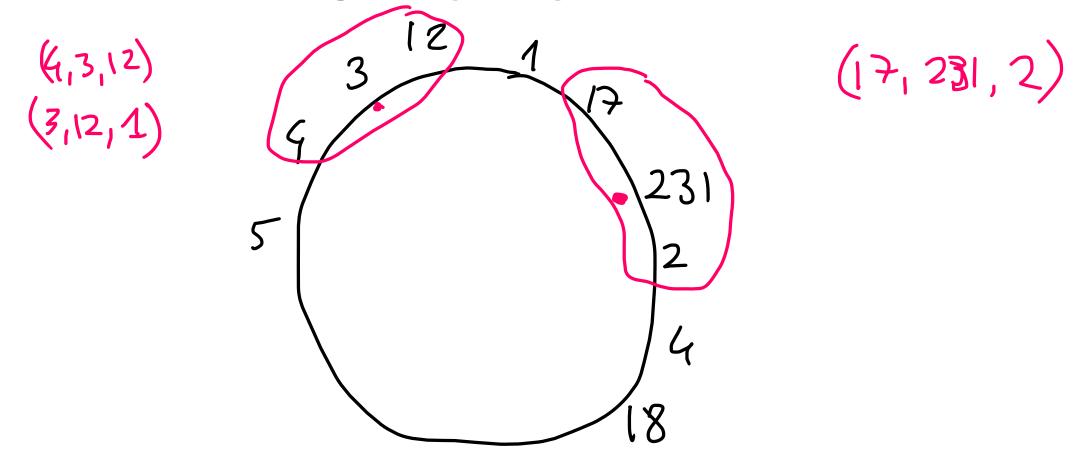
Definition 8.3 (r-hop view). We call the collection of the initial states of all nodes in the r-neighborhood of a node v, the r-hop view of v.

Corollary 8.4. A deterministic r-round algorithm \mathcal{A} is a function that maps every possible r-hop view to the set of possible outputs.

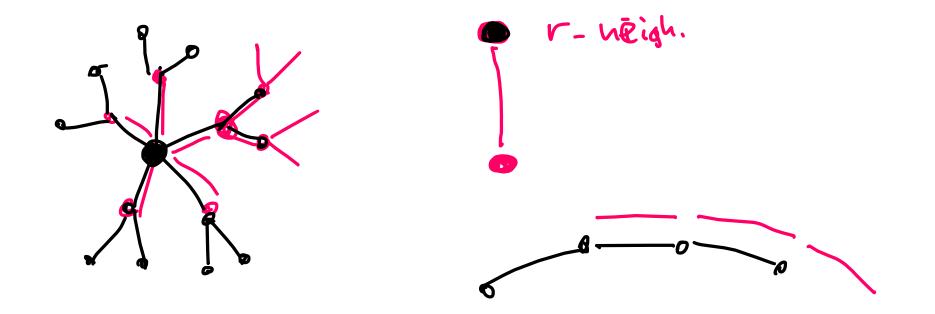
r-hop views on a ring, neighboring views



Definition 8.5 (Neighborhood Graph). For a given family of network graphs \mathcal{G} , the r-neighborhood graph $\mathcal{N}_r(\mathcal{G})$ is defined as follows. The node set of $\mathcal{N}_r(\mathcal{G})$ is the set of all possible labeled r-neighborhoods (i.e., all possible r-hop views). There is an edge between two labeled r-neighborhoods \mathcal{V}_r and \mathcal{V}'_r if \mathcal{V}_r and \mathcal{V}'_r can be the r-hop views of two adjacent nodes.



Definition 8.5 (Neighborhood Graph). For a given family of network graphs \mathcal{G} , the r-neighborhood graph $\mathcal{N}_r(\mathcal{G})$ is defined as follows. The node set of $\mathcal{N}_r(\mathcal{G})$ is the set of all possible labeled r-neighborhoods (i.e., all possible r-hop views). There is an edge between two labeled r-neighborhoods \mathcal{V}_r and \mathcal{V}'_r if \mathcal{V}_r and \mathcal{V}'_r can be the r-hop views of two adjacent nodes.



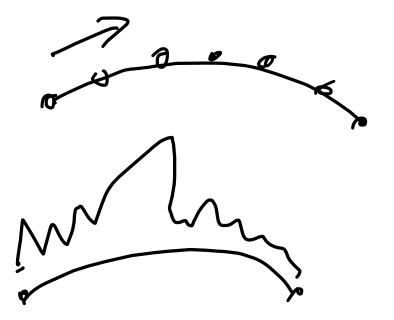
Lemma 8.6. For a given family of network graphs \mathcal{G} , there is an r-round algorithm that colors graphs of \mathcal{G} with c colors iff the chromatic number of the neighborhood graph is $\chi(\mathcal{N}_r(\mathcal{G})) \leq c$.

.

$$V[\mathcal{B}_k] = \{(\alpha_1, \dots, \alpha_k) : \alpha_i \in [n], i < j \to \underline{\alpha_i} < \alpha_j\}$$
(8.1)
For $\underline{\alpha} = (\alpha_1, \dots, \alpha_k)$ and $\underline{\beta} = (\beta_1, \dots, \beta_k)$ there is a directed edge from $\underline{\alpha}$ to $\underline{\beta}$ iff
 $\forall i \in \{1, \dots, k-1\} : \beta_i = \alpha_{i+1}.$ (8.2)

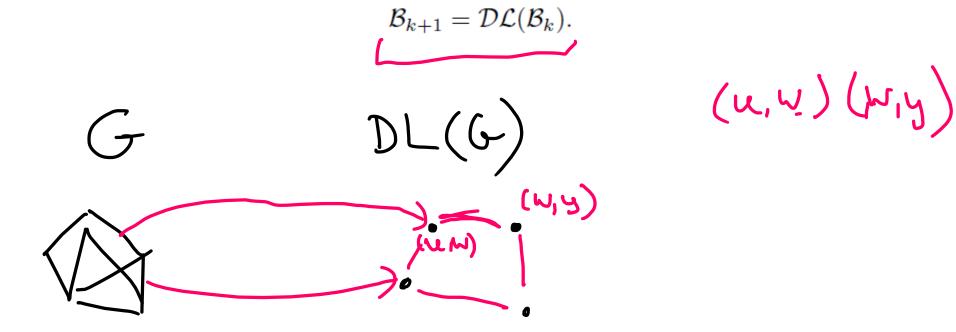
$$\begin{pmatrix} \varkappa_{1} & \varkappa_{2} & \varkappa_{3} & \varkappa_{4} & \varkappa_{5} \end{pmatrix}$$
$$\begin{pmatrix} \varkappa_{1} & \varkappa_{1} & \varkappa_{1} & \varkappa_{7} \end{pmatrix}$$
$$\begin{pmatrix} \beta_{1} & \beta_{2} & \beta_{3} & \beta_{5} \end{pmatrix}$$

Lemma 8.7. Viewed as an undirected graph, the graph \mathcal{B}_{2r+1} is a subgraph of the r-neighborhood graph of directed n-node rings with node labels from [n].



Definition 8.8 (Diline Graph). The directed line graph (diline graph) $\mathcal{DL}(G)$ of a directed graph G = (V, E) is defined as follows. The node set of $\mathcal{DL}(G)$ is $V[\mathcal{DL}(G)] = E$. There is a directed edge ((w, x), (y, z)) between $(w, x) \in E$ and $(y, z) \in E$ iff x = y, i.e., if the first edge ends where the second one starts.

Lemma 8.9. If n > k, the graph \mathcal{B}_{k+1} can be defined recursively as follows:

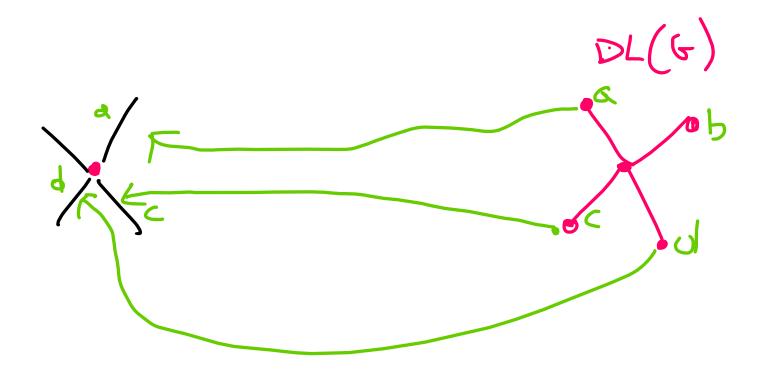


& Br $(\ltimes_{1} \cdots \ltimes_{r})$ $(\alpha_1,\ldots,\alpha_r),(\alpha_2,\alpha_3,\ldots,\alpha_r+1)$ DLIN(Br) (~₁₁ ×. + 1) r+1 - - .

Lemma 8.10. For the chromatic numbers $\chi(G)$ and $\chi(\mathcal{DL}(G))$ of a directed graph G and its diline graph, it holds that

$$\chi(\mathcal{DL}(G)) \ge \log_2(\chi(G)).$$

- c colors of DLIN(G) -- colors of the edges
- collection of colors of outgoing edges = node colors in G



Theorem 8.12. Every deterministic, distributed algorithm to color a directed ring with 3 or less colors needs at least $(\log^* n)/2 - 1$ rounds.

start: Chromatic number of B1 is n

 $\chi(B2) \ge (\log n) = \log \chi(B1) h$ $\chi(B3) \ge \log(\chi(B_2)) = \log\log n$ X (B(c·logn)) # M>3