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I. Parallel computing

parallel computing today:

supercomputers

clasters of computers tightly connected (supercomputing centers)
multicore architectures

hardware like graphic cards

some embedded systems

limitations for increasing computing power:

each operation consumes energy, physical limitations

increasing speed (frequency of the processor clock) increases energy con-
sumption per second on a mm?

the same efect of more dense layout - large scale of integration

... but the heat has to removed in order to prevent overheating. This is
hard (cooling systems)!

= progress on single processor architectures has been stopped after rapid
progres during the 90’s

parallelisation as a remaining option

types of parallel machines:

program execution:

e SIMD - single instruction multiple data (all processors execute the
same code and are in the same place in the program, typically used
for ,vector computations”, that is matrices and so

e MIMD - multiple instruction multiple data
memory type:

e shared (all locations accessible by all processors, problems of con-
flicts)

e distributed (each processor has own memory, adressing remote
memory via its owner)

e hybrid (both types, shared memory slower and problematic, but
sometimes extremely useful)



— interconnections:
e mesh
e hypercube or its variants (butterfly, deBruijn)
o fat tree

— communication between the processors:

e MPI (Message Passing Interface) a standard for point-to-point
communication, buffers on endpoints, coordination: no message
delivered before it is sent

e shared memory (types: concurrent writes, collision, exclusive
write,...)

— coordination between processors:

e MPI: the programmer is fully responsible for it, logical structure
of the algorithm has to ensure proper execution

e shared memory: coordination from the global clock but ... latency,
conflicts, ...

e BSP (Bulk Synchronous Processing): supersteps, at the end of the
superstep everything synchronised again, during the superstep the
timing unpredictable

e LogP: a model with synchronous clock and limitation of latency
of communication

— parallelisation:

e by hand: define processes (processes are assigned to processors by
the manager of a parallel machine)

e writing a code, giving to a compiler that recognizes parallelism and
transfers into appropriate code

e necessary to write programs with explicit parallelism in
mind

e in some languages explicit declarations

generally: a weak point (people think sequentially)

application areas:
— numerical computations of linear algebra

— all spacial computations (2D, 3D,..) for instance in civil engineering,
weather forecast,



— crypto - code breaking via brute force and many search algorithms

— bioinformatics, genetics, chemistry (simulating as a cheap and fast initial
stage of design to eliminate most of wrng directions)

— modelling complex systems

computational complexity for parallel computing;:

— time (sometimes called depth) from the start to the moment when the
output is ready

e if there is no fixed termination time it might be problematic to
reach consensus when the computation has been finished

— work = the total amount of steps executed by all processors involved

e generally the work cannot be lower than in case of a sequential
execution (a sequential machine can always simulate a parallel
computation)

e typically the price for time speed-up is an increase of work

main problems:
— tme to market

— correctness of algorithms (practically infinite number of options for timing
options of interprocessor communication)

— most programmers cannot think in terms of parallel programs

— some problems cannot be solved faster by parallel machines

Example of inherently parallel task:

compute H, for a given I, t and n, where Hy=1, H; 1 =Hash(H;,1,t)
Hash is a crytographic hash function

Knowledge assumption (simplified version): if a system learns h and y
such that h =Hash(y) then with very high probability y must appear during the
computation before h

Many algorithmic problems are hard to parallelize. It is an open
theoretical question whether, say, all problems solvable in polynomial time can
be executed in much shorter time by a parallel machine.

Some issues:
— load balancing (utilize processors evenly):

— sophisticated approaches or



— random strategies (e.g. choose two processors at random and
assign the task to a processor with less load — so called ,power
of two choices”)

— symmetry breaking: if no IDs assigned to processes then processes
might be in exactly the same state and who should take which role.
Solution: based on random choice

— concensus: processes might have a different understanding of the global
state

— Byzentine agreement: the messages might be undelivered. What to do
in this case? A majority 2/3 of nonmalicious processors should be able
to make a decision

(Byzantine agreement problem: there are two Byzantine armies. If
they attack the enemy at the same time, then they win. Communication
between the armies is via messengers that go through the enemy territory.
The messangers can be captured - the sender cannot be sure that the
message arrived at the destination)

ALGORITHM EXAMPLES
(borrowed from Parallel Algorithms by G.Blelloch and B. Maggs)

SUM: compute the sum elements in an array (shared memory)

— recursive call to the procedure for elements A[2i] + A[2i+ 1] for i=1, ...,
|Al/2

— work O(n), time O(logn), nmber of processors can be n/logn (combina-
tion of sequential and parallel)

PARALLEL PREFIX: compute Z:l Alj], simultaneously for j=1,2,.....n
ALGORITHM: ParallelPrefix(A)
1 if |A| =1 then return A[0]
2 else
3 S =ParallelPrefix({A[2i] + A[2i +1]},—1,.|a|/2)
4 R[i]:=S[i/2] if i even, else R[i]:=S[i —1/2] + A[i] for i <n

array R is the output

Work: W (n) =W (n/2)+ O(n) so W(n)=0(n)
Time D(n)=D(n/2)+O(1) so D(n)=0(logn)



POINTER-JUMPING: given a directed acyclic graph (e.g. a tree), find the
root for each vertex

ALGORITHM: pointer-jumping(P)
1 for j from 1 to [log|P]]
2 P:= P[P[i] for i <|P|

at each iteration the poiter jumps forwards, the exception are the roots that
point to themselves

LIST-RANKING: given a list represented via pointers, find the distance of
each vertex from the head of the list

idea: like pointer jumping, but keep counting the distance to the node shown
by the pointer

ALGORITHM: list-ranking(P)

1 assign V[i] =1 unless P[i] =1 (pointer to itself)
2 for j from 1 to [log |P]]

3 V[i]:=VIi]+ V[P[i]] fori<|P|

4 P:=P[P[i]] fori<|P|

V' is the output
Work is O(nlogn) . Bad!

a typical improvement via random sampling:
— choose n/logn start nodes at random

— from each start node walk (1 process, sequentially) until the next start
node encountered

— (requires O(logn) steps whp)

— solve the problem with the list of start nodes and initialized not with 1
but the distance to the next start node

— walk back (in parallel starting from each starting node) and compute the
distances on the way

time remains logarithmic, but the work is time-

number of processsors = O(log n-n/logn) = O(logn)

REMOVING DUPLICATES: array contains entries, some of them appear
more then once. Remove duplicates (leave only one position for a given value)

— if the range of the elements is small, the problem is easy to solve:

e (in parallel) read a position in the input array,



e if z found then write z into the output array R[z]:=z
necessary concurrent write

solution with hashing:
ALGORITHM: remove-duplicates(V")
1 choose a prime higher than 2 |V|
2 fill TABLE with —1

31:=0
4 R:={}
5 while |V| >0

6 in TABLE insert value j in position hash(V[j],m,1) for each j

7 WINNERS := {V[j]: TABLE(hash(V[j],m, ) = j)}

8 append R with the list of winners

9 in TABLE insert value hash(k,m, ) in position k for each k in WINNERS h
10 leave in V only those k, for which TABLE[hash(k,m, ) #k]

11i:=i+1

RESULT is the output

fine tuning regarding the choice of m at each stage

appending the list of winners requires parallel prefix

— too small m means a lot of collisions

each stage uses a different 7, so hash values are unrelated

SORTING
— QUICKSORT is an inherently parallel algorithm

—  but RADIXSORT works also fine (requires that the valus are b bit num-
bers, time O(b-logn), work O(b-n)

ALGORITHM: radixsort(A4, b)
1fori=0,...b—1
2 flags:={(a>i) mod2:ac A}
3 notflags :=1 — flags
4 Ry:= parallelprefix(notflags)
5 so:=sum(notflags)
6 R;:= paralleprefix(flags)
7 R[j]:= Rolj] if flags[j] =0, else R[j]:= R1[j]+ so (computing ranks)
8 rewrite A: value A[j] moved to position R][j]

A is the output

— stable sorting (order of the same elements preserved)



— first reorder accordign to the least significant bit, then 2nd, ...

BREADTH-FIRST-SEARCH:

ALGORITHM: BFS(s, G)

1 FRONT ;= [3]
2 fill TREE with —1
3 TREE [s]:=s

4 while |[FRONT = 0|

5 E:=flatten({{(u, v): uneighbor of v}: v € FRONT})
6 E':={(u,v)€e E:TREFE[u]=-1}

7 append TREE with E’

8 FRONT :={u: (u,c) € E'and v =TREE[u]}

return TREE

E’ created with concurrent write, possibly there are some loosers

CONNECTED-COMPONENTS: label all vertices in a component with the
same lable, different label for different connected components

— possible with BFS but inefficient

— solution based on graph contraction

ALGORITHM: randomcontraction(LABELS, E)

1if (J£|=0 then return LABELS

2 else

3 each vertex chooses a bit at random, a child — 1 has been chosen

4 HOOKS := {(u, v) € E: child[u] =1 and child[v] =0}

5 put in LABELS values from HOOKS

6 E':= {(LABELS[u], LABELS[v]: (u,v) €E and LABELS|u] # LABELS|[v]}
7 LABELS':= randomcontraction(LABELS, E’)

8 insert to LABELS' entries (u, LABELS’[v]) for (u,v) € HOOKS

HOOKS returned

ALGORITHM: deterministiccontract(labels, E)
1if (JF|=0 then return LABELS

2 else

3 HOOKS:={(u,v) € E:u>v }



4 put in LABELS values from HOOKS

6 with pointer jumping assign LABELS according to the roots of local trees
7 E’:={(LABELS|u], LABELS|v): (u, v) € F and labels different }

8 return deterministiccontract(LABELS, E’)

sometimes works badly:
a star graph with labels 1..n outside and label n in the middle of the star
— n recursive calls

MINIMUM SPANNING TREE: a graph where edges has weights,
look for a subgraph — a tree on all vertices and with a minimal weight

— easy: Lemma: for a node an outcoming edge of minimal weight belongs
to the MST

— modify contract algorithm and a child always chooses an edge of the
minimal weight (not a random one, not to a smaller node)
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