
Zaawansowane Techniki Algorytmiczne

Mirosław Kutyłowski 2016

Katedra Informatyki WPPT, PWr

Plan wykładu

1. modele obliczeń

a. systemy równoległe

b. systemy rozproszone

c. sieci Boolowskie, OBDD

d. obliczenia kwantowe i inne modele odbiegające od modelu von
Neumanna

2. paradygmaty algorytmiczne

a. samostabilizacja

b. algorytmy aproksymacyjne

c. algorytmy dla danych rozmytych

d. algorytmy losowe

e. derandomizacja

f. algorytmy online

g. uniwersalne heurystyki

3. analiza złożoności

a. granice dolne

b. złożoność komunikacyjna

c. kombinatoryka analityczna

d. rapid mixing

e. rozwiązania dla ograniczonych zasobów

Cele
wykształcenie umiejętności w zakresie wykorzystania szerokiego spektrum

zaawansowanych technik algorytmicznych, umiejętności z zakresie analizy
poprawności i efektywności algorytmów

——————————————————————————————————————–

MODELS

—————————————————————————————————–

I. Parallel computing

parallel computing today:

− supercomputers

− clasters of computers tightly connected (supercomputing centers)

− multicore architectures

− hardware like graphic cards

− some embedded systems

limitations for increasing computing power:

– each operation consumes energy, physical limitations

– increasing speed (frequency of the processor clock) increases energy con-
sumption per second on a mm2

– the same efect of more dense layout - large scale of integration

– ... but the heat has to removed in order to prevent overheating. This is
hard (cooling systems)!

– ⇒ progress on single processor architectures has been stopped after rapid
progres during the 90’s

– parallelisation as a remaining option

types of parallel machines:

– program execution:

• SIMD - single instruction multiple data (all processors execute the
same code and are in the same place in the program, typically used
for „vector computations”, that is matrices and so

• MIMD - multiple instruction multiple data

– memory type:

• shared (all locations accessible by all processors, problems of con-
flicts)

• distributed (each processor has own memory, adressing remote
memory via its owner)

• hybrid (both types, shared memory slower and problematic, but
sometimes extremely useful)

– interconnections:

• mesh

• hypercube or its variants (butterfly, deBruijn)

• fat tree

– communication between the processors:

• MPI (Message Passing Interface) a standard for point-to-point
communication, buffers on endpoints, coordination: no message
delivered before it is sent

• shared memory (types: concurrent writes, collision, exclusive
write,...)

– coordination between processors:

• MPI: the programmer is fully responsible for it, logical structure
of the algorithm has to ensure proper execution

• shared memory: coordination from the global clock but ... latency,
conflicts, ...

• BSP (Bulk Synchronous Processing): supersteps, at the end of the
superstep everything synchronised again, during the superstep the
timing unpredictable

• LogP: a model with synchronous clock and limitation of latency
of communication

– parallelisation:

• by hand: define processes (processes are assigned to processors by
the manager of a parallel machine)

• writing a code, giving to a compiler that recognizes parallelism and
transfers into appropriate code

• necessary to write programs with explicit parallelism in
mind

• in some languages explicit declarations

generally: a weak point (people think sequentially)

application areas:

– numerical computations of linear algebra

– all spacial computations (2D, 3D,..) for instance in civil engineering,
weather forecast,

– crypto - code breaking via brute force and many search algorithms

– bioinformatics, genetics, chemistry (simulating as a cheap and fast initial
stage of design to eliminate most of wrng directions)

– modelling complex systems

computational complexity for parallel computing:

– time (sometimes called depth) from the start to the moment when the
output is ready

• if there is no fixed termination time it might be problematic to
reach consensus when the computation has been finished

– work = the total amount of steps executed by all processors involved

• generally the work cannot be lower than in case of a sequential
execution (a sequential machine can always simulate a parallel
computation)

• typically the price for time speed-up is an increase of work

main problems:

– tme to market

– correctness of algorithms (practically infinite number of options for timing
options of interprocessor communication)

– most programmers cannot think in terms of parallel programs

– some problems cannot be solved faster by parallel machines

Example of inherently parallel task:

compute Hn for a given I, t and n, where H0= I, Hi+1=Hash(Hi, i, t)
Hash is a crytographic hash function

Knowledge assumption (simplified version): if a system learns h and y

such that h=Hash(y) then with very high probability y must appear during the
computation before h

Many algorithmic problems are hard to parallelize. It is an open
theoretical question whether, say, all problems solvable in polynomial time can
be executed in much shorter time by a parallel machine.

Some issues:

→ load balancing (utilize processors evenly):

– sophisticated approaches or

– random strategies (e.g. choose two processors at random and
assign the task to a processor with less load – so called „power
of two choices”)

→ symmetry breaking: if no IDs assigned to processes then processes
might be in exactly the same state and who should take which role.
Solution: based on random choice

→ concensus: processes might have a different understanding of the global
state

→ Byzentine agreement: the messages might be undelivered. What to do
in this case? A majority 2/3 of nonmalicious processors should be able
to make a decision

(Byzantine agreement problem: there are two Byzantine armies. If
they attack the enemy at the same time, then they win. Communication
between the armies is via messengers that go through the enemy territory.
The messangers can be captured - the sender cannot be sure that the
message arrived at the destination)

ALGORITHM EXAMPLES
(borrowed from Parallel Algorithms by G.Blelloch and B. Maggs)

SUM: compute the sum elements in an array (shared memory)

– recursive call to the procedure for elements A[2i] +A[2i+1] for i=1,
 ,
|A|/2

– work O(n), time O(logn), nmber of processors can be n/logn (combina-
tion of sequential and parallel)

PARALLEL PREFIX: compute
∑

i=1
j

A[j], simultaneously for j=1, 2,
 ., n

ALGORITHM: ParallelPrefix(A)
1 if |A|=1 then return A[0]
2 else
3 S=ParallelPrefix({A[2i] +A[2i+1]}i=1,
 ,|A|/2)
4 R[i]8 S[i/2] if i even, else R[i]8 S[i− 1/2]+A[i] for i≤n

array R is the output

Work: W (n)=W (n/2)+O(n) so W (n)=O(n)
Time D(n)=D(n/2)+O(1) so D(n)=O(log n)

POINTER-JUMPING: given a directed acyclic graph (e.g. a tree), find the
root for each vertex

ALGORITHM: pointer-jumping(P)
1 for j from 1 to ⌈log |P |⌉
2 P 8 P [P [i]] for i≤ |P |

– at each iteration the poiter jumps forwards, the exception are the roots
that point to themselves

– if the pointer already is to the root then the pointer does not change

– generally, the length of jumps double at each iteration, as the maximal
path has length |P |, no more than log |P | iterations are needed

LIST-RANKING: given a list represented via pointers, find the distance of
each vertex from the head of the list

idea: like pointer jumping, but keep counting the distance to the node shown
by the pointer

ALGORITHM: list-ranking(P)
1 assign V [i] = 1 unless P [i] = i (pointer to itself)
2 for j from 1 to ⌈log |P |⌉
3 V [i]8 V [i] +V [P [i]] for i≤ |P |
4 P 8 P [P [i]] for i≤ |P |

V is the output

Work is Θ(n log n) . Bad!

a typical improvement via random sampling:

– choose n/log n start nodes at random

– from each start node walk (1 process per start node, the walk is sequen-
tial) until another start node is encountered

– with high probability each walk stops after O(log n) steps

– solve the LIST-RANKING problem with the list of start nodes and ini-
tialized not with 1 but the distance to the next start node

– for the reduced problem the previous algorithm can be applied, it requires
O(n/log n· log (n/log n))=O(n) work, – so within the bound O(n)

– walk back (in parallel starting from each starting node) and compute the
distances on the way

execution time remains logarithmic, but the work is time·
number of processsors=O(log n·n/ log n)=O(log n)

REMOVING DUPLICATES: array contains entries, some of them appear
more then once. Remove duplicates (leave only one position for a given value)

– if the range of the elements is small, the problem is easy to solve:

• (in parallel) read a position in the input array,

• if z found then write z into the output array R[z]8 z

concurrent write is necessary

a solution based on hashing:

ALGORITHM: remove-duplicates(V)
1 choose a prime m higher than 2 · |V |
2 fill TABLE with −1
3 i8 0
4 R8 {}
5 while |V |> 0
6 in TABLE insert value j in position hash(V [j],m, i) for each j

7 WINNERS 8 {V [j]:TABLE(hash(V [j],m, i) = j)}
8 append R with the list of winners
9 in TABLE insert value hash(k,m, i) in position k for each k in WINNERS h
10 leave in V only those k, for which TABLE[hash(k,m, i)�k]
11 i8 i+1

RESULT is the output

– fine tuning regarding the choice of m at each stage

– appending the list of winners requires parallel prefix

– too small m means a lot of collisions

– each stage uses a different i, so hash values are unrelated

SORTING

− QUICKSORT is an inherently parallel algorithm

− but RADIXSORT works also fine (requires that the valus are b bit num-
bers, time O(b · log n), work O(b ·n)

ALGORITHM: radixsort(A, b)

1 for i=0,
 , b− 1
2 flags8 {(a≫ i)mod 2: a∈A}
3 notflags 8 1−flags
4 R08 parallelprefix(notflags)
5 s08 sum(notflags)
6 R18 paralleprefix(flags)
7 R[j]8 R0[j] if flags[j] = 0, else R[j]8 R1[j] + s0 (computing ranks)
8 rewrite A: value A[j] moved to position R[j]

A is the output

– stable sorting (order of the same elements preserved)

– first reorder according to the least significant bit, then 2nd, ...

BREADTH-FIRST-SEARCH:

ALGORITHM: BFS(s, G)
1 FRONT8 [s]
2 fill TREE with −1
3 TREE [s]8 s

4 while |FRONT� 0|
5 E8 flatten({{(u, v): uneighbor of v}: v ∈FRONT})
6 E ′

8 {(u, v)∈E:TREE[u] =−1}
7 append TREE with E ′

8 FRONT8 {u: (u, c)∈E ′ and v=TREE[u]}

return TREE

E ′ created with concurrent write, possibly there are some loosers
the function flatten used due to different graph representations

CONNECTED-COMPONENTS: label all vertices in a component with the
same label, different label for different connected components

– possible with BFS but inefficient

– solution based on graph contraction

ALGORITHM: randomcontraction(LABELS, E)
1 if (|E |=0 then return LABELS
2 else
3 each vertex chooses a bit at random, a vertex called a child if 1 chosen
4 HOOKS8 {(u, v)∈E: child[u] = 1 and child[v] = 0}

5 put in LABELS values from HOOKS
6 E ′

8 {(LABELS[u],LABELS[v]: (u, v)∈E andLABELS[u]� LABELS[v]}
7 LABELS′

8 randomcontraction(LABELS, E ′)
8 insert to LABELS′ entries (u,LABELS′[v]) for (u, v)∈HOOKS

LABELS’ returned

ALGORITHM: deterministiccontract(labels, E)
1 if (|E |=0 then return LABELS
2 else
3 HOOKS8 {(u, v)∈E:u> v }
4 put in LABELS values from HOOKS
6 with pointer jumping assign LABELS according to the roots of local trees
7 E ′

8 {(LABELS[u],LABELS[v]: (u, v)∈E and labels different}
8 return deterministiccontract(LABELS, E ′)

sometimes works badly:
a star graph with labels 1..n outside and label n in the middle of the star
– n recursive calls

MINIMUM_SPANNING_TREE: a graph where edges has weights,
look for a subgraph – a tree on all vertices and with a minimal weight

– easy: Lemma: for a node an outcoming edge of minimal weight belongs
to the MST

– modify contract algorithm and a child always chooses an edge of the
minimal weight (not a random one, not to a smaller node)

—————————————————————————————————–

II. Distributed computing

(notices from the script of R. Wattenhofer, ETH Zurich)

Coloring algorithms

Quorum Systems

Quorum system idea:

• there are n servers, data is to be stored on all of them

• however, doing it at once is hard

• if we update a record on a subset of servers (a quorum) - we lock it and
update

• in order to read a data the user checks all servers from some quorum and
takes the mot recent one

• (we may assume that the data are authenticated together with time
stamps so it is easy to see which version is the most recent one)

• different possibilities for quorums help as each server may fail to respond,
...

Problem:

• how to define quorums so that: any two quorums have non-empty inter-
section

• how to define access strategy: assign probability to each quorum and while
reading choose a quorum according to this probability

• examples:

− singelton: only one quorum consisting of one server

− majority: every set of at least n/2+ 1 servers

Quality of a solution: load

• LZ(v) is load of a server v for a strategy Z: the probability that the server
v will be read:

∑

v∈Q
Pr (Z choosesQ)

• LZ(S) – the load of a strategy Z over a quorum S: max over all LZ(v)

• L(S)=LZ(S) for the best strategy Z

Quality of a solution: work

• WZ(S)−work for strategy Z is the expected size of a quorum chosen

• W (S)−work for the quorum S for the best strategy Z

Examples:
singelton: work=1, load=1

majority: work >n/2, load≈0.5

Theorem L(S)≥ 1/ n
√

− consider a quorum Q with the smalles size q

− claim: for some v∈Q, LZ(v)≥1/q, indeed: each time a quorum is accessed
at least one server from Q is accessed as well, the probabilities of quorums
sum up to 1 and they are „distributed” among q servers

− each time at least q servers are accessed, so there must be a server with
LZ(v)≥ q/n

− LZ(v)≥max (1/q, q/n) . The best choice is q= n
√

Grid quorum system:

• the servers form a grid d× d (n= d2)

• each quorum is a set consisting of a column and a row

• each two quorums have 2 points of intersection

• option 1: a row and a column truncated below this row (only one inter-
section guaranteed)

• option 2: one row plus server per row in the rows below

• load ≈2/ n
√

Locking problem:

• each access has to lock the quorum before writing (otherwise newer record
might be overwrited by an older one)

• deadlock possible: e.g. in the grid system S1 and S2 intersect at s and s′:
S1 locks s
S2 locks s′

neither of them can proceed

• Distributed Locking algorithm:

i. lock the nodes of a quorum one by one, according to their id num-
bers in an increasing way

ii. if a locked server encountered then release all servers locked so far

• Claim: no deadlock possible
Observation: the process that has locked the server with the highest

id is either comple or can proceed (no node with a higher ID has been

• locked so far)

Fault tolerance

• up to f servers may fail, still there should be a quorum disjoint with the
failed servers

• grid quorum system has f -resilience for f < n
√

, it is not n
√

fault resilient
(fail nodes on the diagonal)

Probabilistic failure

• each server works with pbb p

• What is the probability that a quorum system S fails? Notation: Fp(S)

• behavior: Fp(S) inspected for big n:

− for majority quorum system Fp(S)→ 0 for p< 0.5
(follows from Chernoff Bound:
for m independent binary variables xi and success pbb p

Pr

(

∑

i=1

m

xi< (1− δ)m · p
)

<e−m·p·δ2/2

− for grid system, Fp(S)→ 1

– we need at least one failed node per row to fail

– Fp(S)= (1− pd)d> 1−d · pd→1 (as (1+x)n> 1+x ·n for
x>−1

B-Grid

− a grid with n= d ·h · r nodes, d colums

− h bands, each consisting of r rows

− ”minicolumn” is a column in a band

− quorum: a minicolumn in each band, and a band with an element in each
minicolumn

− Fp(S)→ 0

– failure if in each band a complete minicolumn fails or in one band in each
minicolumn an element fails

•
– Fp(S)≤ (d(1− p)r)h+ h(1− pr)d

– use d= n
√

, r= ln (d), p ≥ 2/3

– so (d(1− p)r)h ≤ (d(1/3)r)h= d
(

dln1/3
)

h≈ d{−0.1h}< 1/n

– so h(1 − pr) d<d(1 − pr) d<d
(

1 − dln2/3
)

d ≈ d(1 − d−0.4) d≈
d · e−d0.6

= d−d0.6/ln d−1≪ d−2≈ 1/n

Byzantine systems

• up to f servers may cheat

• f -disseminating: every intersection of quorums contains at least f + 1
servers, there is a quorum without byzantine nodes

• so always at least one quorum survives (the Byzantine ones may pretend
to crash)

• after writing in one quorum and reading by another one there will be a
witness of the correct value (the Byzantine nodes may store an old/wrong
value)

• enough if data authenticated

• as in the proof of the theorem above:

L(S)≥ (f +1)/n
√

• f-masking grid system: a quorum is a column and f +1 rows, required:
2f +1≤ n

√

• M-Grid: f +1
√

rows and f +1
√

columns , quorums intersection have

2 f +1
√ 2=2(f +2) nodes

Opaque systems

− assume there is no data authentication

− two quorums intersect: Q1 is up-to-date, Q2 is not

− we require that the number of nodes in the intersection Q1 ∩ Q2 \ F is
bigger than the number of byzantine nodes in Q2 plus Q2 \Q1

− would be great but...
Theorem. For any f opaque system L(S)≥ 0.5
Proof.

i. size of Q1∩Q2 is at least half of the size of Q1

ii. load on Q1:
∑

v∈Q1

∑

v∈Qi

PZ(Qi) =
∑

i

∑

v∈(Qi∩Q1)

PZ(Qi) ≥
∑

i

(|Q1|/2) ·

PZ(Qi) = |Q1|/2

iii. now by pigeonhole principle: there must be some node in Q1with
at least load 0.5

—————————————————————————————————–

III. Beyond von Neumann machines

Quantum computing and Shor factorization algorithm

Problem and its algebraic context:

– given an RSA number n= p · q for prime factors p and q of a similar size,
the goal is to find p or q

– many modern crypto products are based on difficulty of this factorization
problem. There are many software systems and embedded devices with
RSA, no update is possible

– in order to break factorization problem it suffices to learn a nontrivial
root r of 1:

• r� −1

• r2=1modn

indeed

• r2− 1= (r− 1)(r+1)= 0 mod p · q
• therefore p divides either r− 1 or r+1

• if p divides r − 1 then q cannot divide r − 1 as then r − 1 would
be at least n, but r− 1<n

• in this situation we compute GCD(n, r− 1), the result must be p

• if p divides r+1 then q cannot divide r+1 and therefore q must
divide r− 1. In this case GCD(n, r− 1) yields q

– if for a given a<n we find s such that as=1, then with probability ≥0.5
we get as/2 as a nontrivial root of 1. Indeed:

• by Chinese Reminder Theorem a number a < n is represented by
ap= amod p and aq= amod q

• given a and b we may compute representation of a · b mod n by
computing ap · bpmod p and aq · bqmod q

• there are two roots of 1 modulo prime number p: 1 and p− 1

• if as=1modn, while as/2� 1modn, then as/2mod p is 1 or −1

• there are the following cases:

1. as/2=1mod p, as/2=−1mod q

2. as/2=−1mod p, as/2=1mod q

3. as/2=−1mod p, as/2=−1mod q
the last case corresponds to −1modn, the first two ones

to a nontrivial roots of -1

– so it suffices to find such an s - the order of a. By repeating the procedure
for different a’s we finally find a nontrivial root of −1modn

Qubit
the concept is as follows:

– instead of a bit with discrete states 0 and 1 we have a linear combination
of basis vectors denoted by | 0〉 and |1〉:

α · |0〉+β · |1〉
with α , β complex numbers

– a measurement of α · |0〉+β · |1〉 yields |0〉 with pbb |α|2 and |1〉 with pbb
|β |2 – this is quite annoying but ...

– moreover: reading changes the state to the state read: if the result is
|0〉 then the physical state becomes |0〉 as well. There is no state α · |0〉+
β · |1〉 anymore.

– In fact, this is the core of Shor’a algorithm - a reading operation
creates a change in a physical system that would be infeasible
to compute on a classical computer

– instead of a single bit we may have strings of qubits, say of length l where
l >n

Quantum operations and gates

– a quantum computer should perform some operations on qubits, technical
realization is a challenge, but in theory possible

– we consider l − qubit numbers as representing numbers mod 2l (well,
this is fuzzy as each bit is fuzzy is a qubit), in this way we a get quantum
state for each a< q=2l

– Hadamard transformation: an easy way to create a quantum state such
that takes any value a (denoted |a〉)with the same probability. The way
to achieve this is:

− create the state |0
 .0〉
− apply Hadamard transformation gate to it

Hadamard transformation is unitary. Its recursive definition:

− H0= [1]

− Hn=
(

Hn−1 Hn−1

Hn−1 −Hn−1

)

– Quantum Fourier transform:

• regular FT: (x1,
 , xN) transformed to (y1,
 ., yN) where

yk=
1

N
√
∑

j=0
N−1

xj · e(2πi·j·k)/N

• quantum:
∑

xi · |i〉 transformed to
∑

yi · |i〉 where

yk=
1

N
√
∑

j=0
N−1

xj · e(2πi·j·k)/N

• in other words:

|j 〉→ 1

N
√
∑

k=0
N−1

e(2πi·j·k)/N · |k〉

„efficient implementation” based on similar algebra as for DFT

Shor’s algorithm (based on presentation of Eric Moorhouse)

1. fix q such that 2n2< q < 3n2, q=2l (or a product of small primes)
we use states with 2l qubits, notation |a, b〉 or |a〉|b〉

2. prepare state |0, 0〉 and apply Hadamard transformation to the first regi-
ster. Its result is a state

|ψ〉= 1

q
√ ·

∑

a=0

q−1

|a, 0〉

3. fix x<n at random

4. to the state |ψ〉 apply the quantum transformation

|a, 0〉→|a, xamodn〉
the result is

1

q
√ ·

∑

a=0

q−1

|a, xamodn〉

(there is a theory how to make such a computation with quantum gates)

5. measure the second register. The result is some k. But then the measured
state changes to

1

M
√ ·

∑

d=0

M−1

|a0+ d · r, k〉

where A is the set of all a such that xa= kmodn
so A= {a0, a0+ r, a0+2r
 .}
and M = |A| (so M ≈ q/r)

6. apply the DFT to the first register. This changes the state

1

M
√ ·

∑

d=0

M−1

|a0+ d · r, k〉

to

1

q ·M
√ ·

∑

c=0

q−1
∑

d=0

M−1

e2πi·c(a0+d·r)/q · |c, k〉

which is equal to

∑

c=0

q−1
e2πi·c·a0/q

q ·M
√

∑

d=0

M−1

e2πi·c·d·r/q · |c, k〉

∑

c=0

q−1
e2πi·c·a0/q

q ·M√
∑

d=0

M−1

ζd · |c, k〉
where

ζ = e2πi·c·r/q

7. measure the first register (this is the key moment!!)

– which c is read depends on the values of
∑

d=0
M−1

ζd−which correspond to the probability

– if c · r/q is not very close to an integer, then the sum is 1− ζM

1− ζ

– if c · r/q is an integer, then we sum up M ones

– so the former case is unlikely and the readings are concentrated
around values c such that

c/q≈ d/r

for an integer d

– the rest is a classical computation involving c, q . The search space
is relatively narrow

—————————————————————————————————–

IV. Boolean circuits, decision diagrams

TBA (notes of Jacek Cichon)

—————————————————————————————————–

V. Randomized Algorithms

TBA (notes of Jacek Cichon)

1. Randomized: przykŞady: problem filozofów, testowanie równoąci wielo-
mianów, prosty sposób wyboru lidera

2. Randomized: MinCut, nierównoą˘ Markowa, Czebyszewa, kolejne przy-
kŞady, na koniec wpuącili mnie w dyskusjŚ o "Power of Two Choices" -
powiedzieli mi, ťe mówiŞeą o tym, ale chceli jeszcze raz o tym porozmawia˘

3. Derandomizacja: MaxCut - metoda wartoąci oczekiwanej; wróciliąmy do
MinCut, zauwaťyliąmy, ťe wystarczy niezaleťnoą˘ par, omówiliąmy jak z k bitów
losowych moťna zrobi˘ 2^k-1 parami niezaleťnych zmiennych {0,1} (sumy po
podzbiorach modulo 2) i jak to moťna wykorzysta˘.

—————————————————————————————————–

——————————————————————————————————————–

ALGORITHMIC PARADIGMS

VI. Online Algorithms
(based on Susane Albers lectures)

Setting and problem formulation

• the requests come online σ0, σ1,
 , σn in a unpredictable way

• the request σi must be served immediately after it arrives

• the overall cost of the service is to optimalized

• the problem: decision how to serve σi at the lowest cost depends on the
future (unknown) requests

• the cost compared with the optimal cost that occurs when we are given
the whole sequence σ0, σ1,
 , σn in advance

Paging Problem

• fast memory holds up to k pages

• in case of a memory request, the requested page is sought in the fast
memory, if not found there („page fault ”), then it is read from slow
memory

• target: minimize the memory access time (= minimize the number of
page faults)

• paradigm: leave in the fast memory the pages that will be used again

• problem: if we read in a page we have to evict one from the fast memory,
which one?

• problem: we do not know which will be used again,

Optimal offline strategy (OPT):

• evict the page that will wait the longest time for its request

Competitive ratio

• given algorithm A, the cost of A (the number of page faults) is denoted
by CA(σ)

• target: find c and a such that

CA(σ)≤ c ·COPT(σ)+ a

• if c is small we have a guarantee of quality

• A is called c-compatitive in this case

• warning: there might be A for which we cannot prove CA(σ) ≤ c ·
COPT(σ)+ a but nevertheless A behaves well

LRU Strategy

• least recently used page is evicted

• deterministic strategy

• LRU is k-compatitive:

– assume that LRU and OPT start with the same pages in the fast

– memory

– define epochs: LRU has exactly k faults on epoch P (i) for i > 1
and at most k in epoch P (0)

– let σti be the first request in P (i) (so σti+1−1 is the last one)

– let p be the last page requested in P (i− 1)

– Claim: P (i) contains k requests to different pages , none of them
=p

– Corollary: OPT has at least one fault in P (i): as it has p in the
fast memory, it cannot hold other k pages from the claim

– Corollary: CLRU(σ)≤ c ·COPT(σ) + k

– Proof of the claim:

− claim holds if LRU has faults on different pages � p

− assume that LRU has fault twice on q: σs1= q, σs2= q

i. q is evicted at time t where s1< t< s2

ii. at this moment it is least recently used

iii. so in time s1,
 , t there are requests to k+1 pages,
so k of them � p

− assume the LRU does not fault twice but one of the faults
is p

i. p generates a fault at time t≥ ti

ii. it must have been evicted by more recent pages in
time ti,
 , t− 1

iii. there must have been k other pages requested

• LRU is the best possible:
Theorem: if a deterministic paging strategy is c compatitive, then c≥k
Proof

for a deterministic strategy A and k+1 pages in total

i. we choose a sequence of requests that each time the new request
is the page that is not in the fast memory

ii. so A has 1 fault per request

iii. on a request: OPT evicts the page that will not be requested during
the next k− 1 steps

iv. so OPT has at most one fault per k requests

MARKING Algorithm

• surprisingly simple randomized algorithm,

• no immediate reason why it should be better than deterministic

• Algorithm:

− initially all pages in the fast memory unmarked

− when a page fetched it becomes marked, a randomly chosen
unmarked page evicted

− when all pages in the fast memory marked, then all marks removed
and the game starts again

• quality measure: expected cost versus OPT

• Theorem:MARKING is 2Hk-compatitive against any oblivious adversary
that knows the requests in advance. That is

E[CMARKING(σ)]≤ 2Hk ·COPT(σ)

(Hk=
∑

i=1
k 1

i
≈ ln k)

Proof:

i. divide the time into phases: during a phase requests to exactly
k+1 distinct pages

ii. stale page = non marked page that has been marked during the
previous phase

iii. clean page: neither marked nor stale

iv. goal to show: during a phase an amortized number of faults for
OPT is at least c

2
, while for MARKING the expected number is

at most c ·Hk

v. analysis for OPT:

a) SOPT the pages in the fast memory for OPT, SM – for
MARKINGS

b) dI = |SOPT \SM | at the beginning of the phase

c) dF = |SOPT \SM | at the end of the phase

d) let c be the number of clean pages requested during the
phase

e) no clean page is in the memory of MARKINGS, c−dI pages
in common in SM and SOPT

f) so OPT has at least c−dI faults due to clean pages requests

g) at the end of the phase SM contains only pages requested
during the phase, dF of these pages are missing in OPT, so
they have been evicted due to some faults

h) cost at leastmax (c− dI , dF)

max (c− dI , dF)≥ c− dI+ dF
2

=
c

2
− dI

2
+
dF
2

i) sum up over all phases:

total cost≥ (number of all c′s) · 1
2
− 0+

dF
2

where 0= initial dI

vi. analysis for MARKING for a phase:

a) serving c clean pages costs c (all faults)

b) there are s= k− c stale requests

c) we have to compute the expected cost for the ith request
to a stale page

d) c(i) denotes the number of clean pages requested up to the
ith stale request

e) there are k stale pages at the beginning, at the moment
of the request there are s(i) = k − i+1 stale pages not
requested so far

f) s(i)− c(i) of themare still in the fast memory

g) the expected cost is

s(i)− c(i)

s(i)
· 0+ c(i)

s(i)
· 1≤ c

s(i)

h) by linearity of expectation the expected cost of the phase
is at most

c+
∑

i=1

s
c

k− i+1
≤ c+

∑

j=2

k
c

j
= c ·Hk

Yao’s MINMAX Principle

the expected cost of a randomized algorithms for the worst input
≥

the expected cost of the best deterministic algorithm for the input distribution q

max
x∈X

(E[c(A, x)])≥min
a∈A

(E(a,X))

Proof.
the best way is to build a rectangle where

i. each row corresponds to a deterministic algorithm

ii. each column corresponds to an input

iii. each entry corresponds to cost

iv. max weighted sum over over a column must be at least minimal weighted
sum over a row

symbolic proof:
let C = maxx∈X (E[c(A, x)]), D=mina∈A (E(a,X))

C =
∑

x

qx ·C ≥
∑

x

qx ·E[c(A, x)] =
∑

x

qx ·
∑

a

pa · c(a, x)] =

∑

a

pa ·
∑

x

qx · c(a, x)≥
∑

a

pa ·D=D

Version for online algorithms

the competitive ratio of the best randomized online algorithm against any obli-
vious adversary

≥
the competitive ratio of the best deterministic online algorithm under a worst-

case input distribution

Theorem

For any randomized online algorithm for paging has competitive ratio ≥Hk

Proof

i. use Yao’s MinMax principle: it suffices to show competitive ratio for any
deterministic algorithm for carefully chosen input distribution

ii. input distribution:

− only k+1 pages used

− for t=1 choose page uniformly at random

− for t > 1 choose a page uniformly at random from the set of all
pages but not the last one chosen

iii. a phase defined so that within a phase requests to exactly k+1 distinct
pages

iv. OPT has cost 1 per phase

v. deterministic algorithm:

a) at each step the expected cost is 1

k
as one of k pages that can be

requested is not in the fast memory

b) the expected length of a phase is k ·Hk

VI. RAPID MIXING ALGORITHMS
(mainly based on Randall’s paper)

• idea: the algorithm is not computing something but performing a random
walk in a certain space

• outcome:

− final „random” position in the space

− history of the walk indicating some value

− sometimes a mixing based method of algorithm analysis

• typical scenario:

− we wish to choose an element s∈S at random

− the space S is complex, we have no way to enumerate its elements

−
 but we know at least some (non-random) elements of S

−
 and can perform a random walk through S through small
random modifications in the current state s∈S

• challenges:

i. are all s∈S reachable in this way?

ii. what is the probability distribution of the position after t steps? Is
it close e.g. to the uniform one over S? How relevant is the starting
position?

• examples: statistical physics: movements of a gas particle, shuffling of a
deck of cards

Markov chain

− a (usually finite) set of states S
− transition probabilities to change the state P (i, j) is the probability to

change the state from state si to sj

− stochastic process: discrete time steps: t = 1, 2, 3,
 , at each step the
current state changed according to P

(memoryless process)

− the initial state or probability distribution might be arbitrary
(e.g. we start in a fixed state)

− what is the probability distribution πt after t steps?

− example: shuffling a deck of cards:

− which technique to use? (random to top, ...)

− how many operations necessary?

Stationary distribution:

− a probability distribution π such that applying a single step does not
change it

− P ·π=π in a matrix notation

− we focus on Markov chains that have stationary distribution π (in most
cases the uniform distribution

− ... and where probabilites πi converge quickly to π - rapid mixing

Ergodic chains:
1. irreducible: ∀x, y∃tP t(x, y)> 0 (i.e. y can be reached from x in a long

run with a positive probability)
2. aperiodic: ∀x, y gcd{t:P t(x, y)> 0}=1

Theorem
If a Markov chain is ergodic, then P t converges to the stationary distribution

∀x, y P t(x, y)→π(y)

Example: independent set problem
given a graph G, then a set of vertices is independent if no two members of

I are connected with an edge in G.
we are looking for a random independent set in G

Markov chain

− transitions between independent sets that differ by at most one vertex

− with pbb 1

2
no change (self-loop) - lazy chain

− otherwise choose a vartex v at random:

→ if v is in the independent set, then remove it

→ if v is not in the independent set I then I 8 I ∪ {v} provided
that the resulting set is an independent set

it is ergodic: lazyness helps to show it

Balanced Markov chains

− ergoding finite-state chain M with transition pbb matrix P

− π is a function mapping to [0, 1] with the property

π(x) ·P (x, y)= π(y) ·P (y, x)
− ∑

π(x)= 1

− THEN: π is the unique stationary distribution of M

Corollary: if P is symmetric then the stationary distribution is uniform

Reaching any other pbb distribution - Metropolis-Hastings algo-
rithm:

a step when starting at x

i. choose a neighbor y of x uniformly with pbb 1

2L
where L is the maximum

possible degree in the graph

ii. move to y with pbb min
(

1,
π(y)

π(x)

)

iii. otherwise stay at state x

Example for independent sets:

π(I)=λ|I |/Z, where Z =
∑

I− independent sets
λ|I |

− if I ′= I ∪{v}, then π(I ′)= π(I) ·λ

− in this case transition probabilities:

P (I , I ′)=
1

2n
·min (1, λ)

P (I ′, I)=
1

2n
·min (1, λ−1)

Convergence measure - total variation distance

‖P t, π‖=1

2
·max

y

∑

x

|P t(y, x)− π(x)|
Mixing time

τ (ǫ) =min
t

{‖P t′, π‖<ǫ for all t′≥ t}

rapid mixing: τ (ǫ)is a polynomial in 1/ǫ and relevant state space parameters

Estimating the mixing time with eigenvalues of P

− the stationary distribution is eigenvector with eigenvalue 1

− eigenvalues 1=λ0≥λ1≥λ2≥
λn for n×n matrix P

− theorem
let π∗=min {π(x)}
then

τ (ǫ)≤ 1

1− |λ1|
log (1/(π∗ · ǫ)

and

τ (ǫ)≥ 1

2(1− |λ1|)
log (1/ǫ)

− a proof based on representation of the pbb distribution by a combination
of eigenvalues

Problems:

i. matrix P might be huge

ii. all states might be unknown

iii. computation effort might be enormous – so useless guarantee

COUPLING TECHNIQUE

easy for applications

Definition of coupling

1. Each of the processes Xt and Yt is a faithful

copy of Markov chainM with predefined initial states x and y, respec-
tively

2. if Xt and Yt reach the same state then Xt′= Yt′ for any t′>t

Coupling Lemma

τ (ǫ)≤T · e · ln (1/ǫ)

where T =maxxE[mint{Xt=Yt|X0= x, Y0= y]

example: random walk over a hypercube
chain:

→ with pbb 0.5 stay in the current state

→ otherwise choose coordinate i and bit b, set the bit on position i to b

coupling:

→ processes coupled once each i visited at least once

→ coupon collector problem τ (ǫ)=O(nln(n · ǫ−1))

PATH COUPLING

− metrics with integer values on the state space

− between each x and y there is a path, where each subsequent nodes are
at distance 1

− the maximum length of the path bounded by D (a parameter)

− transition via a random function f : Pr (f(x)= y)=P (x, y)

− xt+1= f(xt), yt+1= f(yt), φ(xt,yt) = 1

− the most important parameter: β=E[φ(xt+1, yt+1)]

i. if β < 1, then τ (ǫ)≤ ln D/ǫ

1− β

ii. if β=1, and α<Pr (φ(xt+1, yt+1)� φ(xt, yt)), then

τ (ǫ)≤⌈e ·D
2

α
⌉ · ln 1

ǫ

- Intuition for these results:
TBD

Example: random coloring of a graph

− we assume that the number of colors is large at least 3d + 1 where d is
the maximum degree

− Markov process:

i. with pbb do nothing, otherwise:

ii. choose at random: a vertex v and a color c

iii. recolor v with c if the result is a valid coloring, otherwise do
nothing

− distance: minimal length of a path where subsequent colorings on the path
differ on exactly one color

− the maximal distance is ≤2n if the number of colors is at least 3n+1

− the transitions: choose (v, c) and attempt to change

− consider colorings r, s at distance 1 - differing at node w. Investigate
E[∆φ(r, s)]:

i. case: v=w:
E[∆φ(r, s)] ≤ 1

n
· −(k − d)

k
(k − d colors would cause reducing

the distance to 0)

ii. case: v is the neighbor of w:
distance between r and s remain unchanged unless the color c

is the color of w in either r or s
E[∆φ(r, s)]≤ 2

n

iii. case: otherwise
the distance does not change

consequently:
E[∆φ(r, s)]≤ 3d− k

k ·n

− by path coupling

τ (ǫ)≤ ln (n/ǫ) · 1

1− 1

k ·n

Min Cut

− divide the set of states into S and Ω \S, where S contains no more than
half of the states

− examine the chance to be „trapped” within S

i. capacity of an edge (x, y): Q(x, y) =π(x) ·P (x, y)
ii. conductance of S:

ΦS=

∑

x∈S,y∈S
Q(x, y)

π(S)

iii. low conductance means that the chain is likely to stay within S

for a long time

− conductance of a chain: Φ=minS (ΦS) – the worst case for the sake of
the analysis

− Theorem:

Φ2/2≤Gap(P)≤ 2Φ

where spectral gap Gap(P)= 1− |λ1|
− example: Φ=

1

n
, then τ (ǫ)≥ 1

2(1− |λ1|) log (1/ǫ)≥n · log (1/ǫ)
τ(ǫ)≤ 1

1− |λ1| log (1/(π∗ · ǫ)≤n2/2 · log (1/(π∗ · ǫ)

− example 2: random walk in a circle

→ π(x)=
1

n

→ Φ=
2

n

− example 3: complete graph, stationary distribution π:

− ΦS=
|S | · n −|S|

|S|

|S | =
n

|S | − 1

− Φ=1

− 1− |λ1| ≥ 0.5, so τ (ǫ)≤ 2log(1/(n−1 · ǫ)≤ 2 · (log(n)+ log (1/ǫ))

− 1− |λ1| ≤ 2, so τ (ǫ)≥ log (n)+ log (1/ǫ)

Canonical path method

− consider the graph of states G, a edge (x, y) exists, whenever probability
to go from x to y is positive

− for each pair of nodes (states) define a „canonical path” in G

− the paths should not create congestions (otherwise a time bound for
mixing is high)

− set of paths Γ: a path from x to y called γx,y

− edge (a, b) congestion:

ρ(a, b)=
1

π(a) ·P (a, b) ·
∑

(a,b)∈γx,y

π(x) ·π(y)

− congestion compares the (weighted) number of paths that go through an
edge, to its capacity

− congestion for Γ:

ρ(Γ)=min
e
ρ(e)

− THEOREM: for any choice of Γ, reversible Markov chain:

Φ≥ 1

2ρ

− let S has the minimal conductance Q(S, S̄)

π(S)

− aggregated flow overall paths between S and S̄ is π(S) ·π(S̄)

− aggregated capacity Q(S, S̄) so there is an edge e such that

ρ≥ 1

Q(e)
·
∑

e∈γx,y

π(x)π(y)≥ π(S)π(S̄)

Q(S, S̄)
≥ π(S)/2

Q(S, S̄)
=

1

2Φ

− maximal path length l taken into account: ρ̄ = ρ(Γ) · l
− THEOREM:

assumptions: Markov chain reversible, P (x, x)≥ 0.5, ergodic,
then:

λ1≤ 1− 1

ρ̄

− Example: random walk in the hypercube

i. canonical path: flip the bits (if necessary)going from the left to the
right

ii. stationary distribution is uniform, so π(x)π(y)=2−2n for any x, y,
and finding ρ(e) requires finding the number of cannonical paths
going via e

iii. if e changes bit i then a canonical path from x to y uses e if x
has the same i bits as the starting node of e, and y has the same
n− i suffix – together 2n−1 ways to choose x, y

iv.
∑

e∈γx,y
π(x)π(y)= 2n−1 · 2−2n=2−n−1

v. Q(e)= 2−n · 1

2n

vi. ρ(Γ)=
∑

e∈γx,y
π(x)π(y)

Q(e)
=2n+1 ·n · 2−n−1=n

vii. the cannonical paths have length ≤n, so λ1≤ 1− 1

n2
, or n2≥ 1

1−λ1

viii. so finally τ (ǫ)≤n2(nln2+ lnǫ)

