Zaawansowane Techniki Algorytmiczne

Mirostaw Kutytowski 2017

Katedra Informatyki WPPT, PWr

Plan wykladu

1. modele obliczen

a.

b.

systemy roéwnolegle

systemy rozproszone

c. sieci Boolowskie, OBDD

obliczenia kwantowe i inne modele odbiegajace od modelu von
Neumanna

2. paradygmaty algorytmiczne

a.

=

e.

f.
g.

samostabilizacja

algorytmy aproksymacyjne

c. algorytmy dla danych rozmytych
d.

algorytmy losowe
derandomizacja
algorytmy online

uniwersalne heurystyki

3. analiza zlozonosci

a.
b.

o

&

Cele

granice dolne
zlozono$é komunikacyjna
kombinatoryka analityczna

rapid mixing

. rozwiazania dla ograniczonych zasobow

wyksztalcenie umiejetnosci w zakresie wykorzystania szerokiego spektrum
zaawansowanych technik algorytmicznych, umiejetnosci z zakresie analizy
poprawnosci i efektywnosci algorytmow

MODELS

I. Parallel computing

parallel computing today:

supercomputers

clasters of computers tightly connected (supercomputing centers)
multicore architectures

hardware like graphic cards

some embedded systems

limitations for increasing computing power:

each operation consumes energy, physical limitations

increasing speed (frequency of the processor clock) increases energy con-
sumption per second on a mm?

the same efect of more dense layout - large scale of integration

... but the heat has to removed in order to prevent overheating. This is
hard (cooling systems)!

= progress on single processor architectures has been stopped after rapid
progres during the 90’s

parallelisation as a remaining option

types of parallel machines:

program execution:

e SIMD - single instruction multiple data (all processors execute the
same code and are in the same place in the program, typically used
for ,,vector computations”, that is matrices and so

e MIMD - multiple instruction multiple data
memory type:

e shared (all locations accessible by all processors, problems of con-
flicts)

e distributed (each processor has own memory, adressing remote
memory via its owner)

e hybrid (both types, shared memory slower and problematic, but
sometimes extremely useful)

— interconnections:

e mesh

e hypercube or its variants (butterfly, deBruijn)

o fat tree

— communication between the processors:

e MPI (Message Passing Interface) a standard for point-to-point
communication, buffers on endpoints, coordination: no message
delivered before it is sent

e shared memory (types: concurrent writes, collision, exclusive

write,

)

— coordination between processors:

e MPI: the programmer is fully responsible for it, logical structure
of the algorithm has to ensure proper execution

e shared memory: coordination from the global clock but ... latency,
conflicts, ...
example: compting OR of n bits on a PRAM machine:

in time t each processor knows OR of P(t) values

in time t each memory cell stores OR of M(t) values
after writing: M (t+1)=P(t)+ M(t)

after reading: P(t+1)=M(t+ 1)+ P(t)

a Fibbonaci sequenceM(¢t), P(t), M(t+ 1), P(t +1)....
grows almost like exponentially, but not exactly

so a careful design which address to read and write

e BSP (Bulk Synchronous Processing): supersteps, at the end of the
superstep everything synchronised again, during the superstep the
timing unpredictable

e LogP:

a model with synchronous clock and limitation of latency

of communication

L communication latency (time to deliver a message)

o - overhead (time needed to send or receive a message), at
this time no other operation performed

g - gap, time between consecutive transmissions of messages

Example: computing a; X ag X ... X a, for an associative
operation X:

— obviously, a tree structure for collecting data and
combining results

— we determine how big might be n given a time limit

T:

— for T < L + 20 communication would cost
more, so compute everything locally

— otherwise the last step of the root is to com-
bine its result and the result obtained from
another processor, which has sent at time:
T—-1-L—-20

— ... so we may get a recursive expression for
the maximal n

— parallelisation:

e by hand: define processes (processes are assigned to processors by
the manager of a parallel machine)

e writing a code, giving to a compiler that recognizes parallelism and
transfers into appropriate code

e necessary to write programs with explicit parallelism in
mind

e in some languages explicit declarations

generally: a weak point (people think sequentially)

application areas:
— numerical computations of linear algebra

— all spacial computations (2D, 3D,..) for instance in civil engineering,
weather forecast,

— crypto - code breaking via brute force and many search algorithms

— bioinformatics, genetics, chemistry (simulating as a cheap and fast initial
stage of design to eliminate most of wrong directions)

— modelling complex systems

computational complexity for parallel computing;:

— time (sometimes called depth) from the start to the moment when the
output is ready

e if there is no fixed termination time it might be problematic to
reach consensus when the computation has been finished

— work = the total amount of steps executed by all processors involved

e generally the work cannot be lower than in case of a sequential
execution (a sequential machine can always simulate a parallel
computation)

e typically the price for time speed-up is an increase of work

main problems:
— time to market

— correctness of algorithms (practically infinite number of options for timing
options of interprocessor communication)

— most programmers cannot think in terms of parallel programs

— some problems cannot be solved faster by parallel machines

Example of inherently non-parallel task:

compute H, for a given I, ¢t and n, where Hy=1, H; 1 =Hash(H;,1,t)
Hash is a crytographic hash function

Knowledge assumption (simplified version, one of fundamental assum-
tions for many cryptographic constructions):

if a system learns h and y such that h = Hash(y), then with very high
probability y must appear during the computation before h

Many algorithmic problems seem to be hard to parallelize. It is an
open theoretical question whether, say, all problems solvable in polynomial time
can be executed in much shorter time by a parallel machine.

Some issues:
— load balancing (utilize processors evenly):
— sophisticated approaches or

— random strategies (e.g. choose two processors at random and
assign the task to a processor with less load — so called ,power
of two choices”)

— symmetry breaking: if no IDs assigned to processes then processes
might be in exactly the same state and who should take which role.
Solution: based on random choice

— concensus: processes might have a different understanding of the global
state

— Byzentine agreement: the messages might be undelivered. What to do
in this case? A majority 2/3 of nonmalicious processors should be able
to make a decision

(Byzantine agreement problem: there are two Byzantine armies. If
they attack the enemy at the same time, then they win. Communication
between the armies is via messengers that go through the enemy territory.
The messangers can be captured - the sender cannot be sure that the
message arrived at the destination)

ALGORITHM EXAMPLES
(borrowed from Parallel Algorithms by G.Blelloch and B. Maggs)

PARALLEL PREFIX: compute 5:1 Alj], simultaneously for j=1,2,.....n

ALGORITHM: ParallelPrefix(A)

1 if |A| =1 then return A[0]

2 else

3 S =ParallelPrefix({A[2i] + A[2i +1]},—1,.|a|/2)

4 R[i]:=S[i/2] if i even, else R[i]:=S[i —1/2] + A[i] for i <n

array R is the output

Work: W (n)=W(n/2)+ O(n) so W(n)=0(n)
Time D(n)=D(n/2)+ O(1) so D(n)=0(logn)

POINTER-JUMPING: given a directed acyclic graph (e.g. a tree), find the
root for each vertex

ALGORITHM: pointer-jumping(P)
1 for j from 1 to [log|P]]
2 P:= P[P[i]] fori<|P]

— at each iteration the poiter jumps forwards, the exception are the roots
that point to themselves

— if the pointer already is to the root then the pointer does not change

— generally, the length of jumps double at each iteration, as the maximal
path has length |P|, no more than log|P]| iterations are needed

LIST-RANKING: given a list represented via pointers, find the distance of
each vertex from the head of the list

idea: like pointer jumping, but keep counting the distance to the node shown
by the pointer

ALGORITHM: list-ranking(P)

1 assign V[i] =1 unless P[i] =1 (pointer to itself)
2 for j from 1 to [log |P]]

3 VI[i]:=VIi]+ V[P[i]] fori<|P|

4 P:=P[P[i]] fori<|P|

V' is the output

Work is O(nlogn) . Bad!

a typical improvement via random sampling:

choose n/logn start nodes at random

from each start node walk (1 process per start node, the walk is sequen-
tial) until another start node is encountered

with high probability each walk stops after O(logn) steps

solve the LIST-RANKING problem with the list of start nodes and ini-
tialized not with 1 but the distance to the next start node

for the reduced problem the previous algorithm can be applied, it requires
O(n/logn-log(n/logn))=0(n) work, — so within the bound O(n)

walk back (in parallel starting from each starting node) and compute the
distances on the way

execution time remains logarithmic, but the work is time:
number of processsors = O(log n-n/logn) = 0O(n)

REMOVING DUPLICATES: array contains entries, some of them appear
more then once. Remove duplicates (leave only one position for a given value)

if the range of the elements is small, the problem is easy to solve:
e (in parallel) read a position in the input array,
e if z found then write z into the output array R[z]:=z

concurrent write is necessary

a solution based on hashing:

ALGORITHM: remove-duplicates(V)

1 choose a prime m higher than 2 |V|
2 fill TABLE with —1

3i:=0

4 R:={}

5 while |V| >0

6 in TABLE insert value j in position hash(V[j], m,%) for each j

7 WINNERS := {V[j]: TABLE(hash(V[j],m,) = j)}

8 append R with the list of winners

9 in TABLE insert hash(k,m,?) in position k for each k from WINNERS
10 leave in V only those k, for which TABLE[hash(k,m,) #k]
11i:=1+1

RESULT is the output

— fine tuning regarding the choice of m at each stage (trade-off between
efficiency - lower m means faster appending - and probability of collisions
-low m means a lot of collisions and many rounds

— appending the list of winners requires parallel prefix
— too small m means a lot of collisions

— each stage uses a different i, so hash values are unrelated

SORTING
— QUICKSORT is an inherently parallel algorithm

— but RADIXSORT works also fine (requires that the valus are b bit num-
bers, time O(b-logn), work O(b-n)

ALGORITHM: radixsort(A4, b)
1fori=0,...b—1
2 flags:={(a>i) mod2:a c A}
3 notflags :=1 — flags
4 Ry:= parallelprefix(notflags)
5 sg:=sum(notflags)
6 R;:= paralleprefix(flags)
7 R[j]:= Rolj] if flags[j] =0, else R[j]:= Ry[j] + so (computing ranks)
8 rewrite A: value A[j] moved to position R][j]

A is the output

properties:
— stable sorting (order of the same elements preserved)

— first reorder according to the least significant bit, then 2nd, ...

CONNECTED-COMPONENTS:
definition: two vertices in a graph are in the same connected component if
there is a path from one vertex to the second vertex

goal: label all vertices in a component with the same label, different label
for different connected components

— one may try BFS search but it is inherently sequential and inefficient in
the parallel setting

— it is easier to solve the problem using graph contraction technique

ALGORITHM: randomcontraction(LABELS, E)

1if (JE|=0 then return LABELS

2 else

3 each vertex chooses a bit at random, a vertex called a child if 1 chosen
4 HOOKS := {(u, v) € E: child[u] =1 and child[v] =0}

5 put in LABELS values from HOOKS (the child gets the label of the parent)
6 E’:={(LABELS[u], LABELS|v]: (u,v) € F and LABELS[u] # LABELS[v]}
7 LABELS':= randomcontraction(LABELS, E’)

8 insert to LABELS’ entries (u, LABELS'[v]) for (u,v) € HOOKS

LABELS’ returned

ALGORITHM: deterministiccontract(labels, E)

1if (JF|=0 then return LABELS

2 else

3 HOOKS:={(u,v) € E:u>v }

4 put in LABELS values from HOOKS (the child gets the label of the parent)
6 with pointer jumping assign LABELS according to the roots of local trees
7 E':= {(LABELS[u], LABELS[v]: (u, v) € FE and labels different }

8 return deterministiccontract(LABELS, E’)

sometimes works badly:
a star graph with labels 1..n — 1 outside and label n in the middle of the star
— n recursive calls are necessary

II. Distributed computing
(notices based on the script of R. Wattenhofer, ETH Zurich)

below 2 interesting general topics from distributed systems. These are only
to examples.
Problems:
— communication takes long time

— communication is unreliable: messages may disappear or come in a wrong
order

— network nodes may fail or even be malicious

— no direct coordination, the processors may have inconsistent view of the
computation as a whole

Client-server Systems

e multiple users
e multiple servers — executing the commands of the users
e each command form a user has to be executed on all servers
e problem with the order of receiving commands:
— servers X, Y storea=0
— client A asks to compute a:=a+1
— client B asks to compute a:=2-a
— X receives order from A and then from B, result: a =2
— Y receives order from B and then from A, result: a=1

— inconsistency created!!

Serializer:

— a distinguished server that collects the commands from the clients and
send them to the servers in the same order

— problem: serializer is a single point of failure

— but the goal of deploying multiple servers was to avoid problem if some
server fails!

Locks:
— each client tries first to lock all servers and then execute the command

— no inconsistency

— but what if some server does not respond? the system is blocked

— some strategy to unlock the servers needed (when two clients lock suc-
cessfully different servers at the same time)

Idea of tickets:
— tickets issued to clients by the servers
— the tickets need not to be returned

— server accepts the commands with the most recently issued tickets only

PAXOS:

client server
initialization
choose command ¢ Tinax: =0
t:=0 C=1
Tstore: =0
phase 1
t:=t+1

ask each server for a ticket
if £ > Tinax then

Tmax =t
respond ok(7Ttore, C)
end if

phase 2
if a majority answers ok(...) then

pick (Tstore,, C) with maximum Tiyiore
if Tytore >0 then

c:=C

send propose(t, ¢) to the servers

if t:=Tpax then
C:=c
Tstore:=1
respond success

phase 3
if majority of answers success
send execute(c) to every server

properties:

if (t, ¢) accepted and stored by majority of servers, then later each
propose(t’, ¢’) contains ¢’ =¢

— take the smallest ¢* for which this is not true
— there must be a server s that has been envolved in both proposals

— s received request for t* after it has stored (¢, ¢) (otherwise t*
would not be a valid ticket)

— but then the response would ok(¢,c) and then ¢’=¢

— no way to get ok(t’,¢/) as t* is the smallest one higher than ¢

Quorum Systems

Quorum system idea:

there are n servers, data is to be stored on all of them
however, doing it at once is hard

if we update a record on a subset of servers (a quorum) - we lock it and
update

in order to read a data the user checks all servers from some quorum and
takes the most recent one

(we may assume that the data are authenticated together with time
stamps so it is easy to see which version is the most recent one)

different possibilities for quorums help as each server may fail to respond,

Problem:

how to define quorums so that: any two quorums have non-empty inter-
section

how to define access strategy: assign probability to each quorum and while
reading choose a quorum according to this probability

examples:
— singelton: only one quorum consisting of one server

— majority: every set of at least n/2+ 1 servers

Quality of a solution: load

Lz(v) is load of a server v for a strategy Z: the probability that the server
v will be read: 37, _, Pr (strategy Z chooses Q)

Lz(S) — the load of a strategy Z over a quorum S: max over all Lz(v)

o L(S)=Lyz(S) for the best strategy Z

Quality of a solution: work
o Wy(S)— work for strategy Z is the expected size of a quorum chosen
o W(S)— work for the quorum S for the best strategy Z

Examples:
singelton: work=1, load=1
majority: work >n/2, load~0.5

Theorem L(S)>1/y/n

— consider a quorum @ with the smallest size ¢

— claim: for some v € Q, Lz(v) >1/q, indeed: each time a quorum is accessed
at least one server from @) is accessed as well, the probabilities of quorums
sum up to 1 and they are ,distributed” among ¢q servers

— each time at least ¢ servers are accessed, so there must be a server with
Lz(v)>q/n

— Lz(v) >max (1/q, g/n) . The expression on the right side is minimized
for g=+/n

Grid quorum system:

e the servers form a grid d x d (n=d?)

e each quorum is a set consisting of a column and a row

e cach two quorums have 2 points of intersection

e option 1: a row and a column truncated below this row (only one inter-
section guaranteed)

e option 2: one row plus server per row in the rows below

e load =2/v/n

Locking problem:

e cach access has to lock the quorum before writing (otherwise a newer
record might be overwrited by an older one)

e deadlock possible: e.g. in the grid system S; and Sy intersect at s and s’:
S1 locks s
S5 locks s’
neither of them can proceed

e Distributed Locking algorithm:

i. lock the nodes of a quorum one by one, according to their id num-
bers in an increasing way

ii. if a locked server encountered then release all servers locked so far

e (laim: no deadlock possible
Observation: the process that has locked the server with the highest
id is either completed or can proceed (no node with a higher ID has been
locked so far)

Fault tolerance

e up to f servers may fail, still there should be a quorum disjoint with the
failed servers

e grid quorum system has f-resilience for f </m, it is not y/n fault resilient
(fail nodes on the diagonal)

Probabilistic failure
e with pbb p a server is not in the failure state
o What is the probability that a quorum system .S fails? Notation: Fj,(S)
e behavior: F,(S) inspected for big n:

— for majority quorum system F,(S)—0 for p<0.5
(follows from Chernoff Bound:
for mindependent binary variables x; and success pbb p

Pr (Z ;< (1— 5)m~p> <e P02
i=1

— for grid system, Fj,(S) —1
— we need at least one failed node per row to fail

— F(S)=1-pH¥>1-d-p?—=1 (as (1+2)">1+z-n for
z>—1

B-Grid (a clever construction for low failure probability)
— agrid with n=d- h-r nodes, d colums
— h bands, each consisting of r rows
— "minicolumn” is a column in a band

— quorum: a minicolumn in each band, additionally: in one chosen band:
an element in each minicolumn

— Fp(S)—0

— failure if in each band a complete minicolumn fails or in one band in each
minicolumn an element fails:

Fp(S) < (d(1—p)")"+h(1—p")?
—uwed=+/n,r=In(d), p>2/3
— then (d(1— p)")" < (d(1/3)")P =d(d™/?)~d~ %1 <1/n

— then h(1 — p") 4<d(1 — p") 4<d(1 — d1n2/3)d ~ d(1 — d—%4) dx
d- e_do.s _ d(_do.e/lnd)+1 < d—2 ~ l/n

Byzantine systems

® up to f servers may cheat

e f-disseminating: every intersection of quorums contains at least f + 1
servers, there is a quorum without Byzantine nodes

e 5o always at least one quorum survives (the Byzantine ones may pretend
to crash)

e after writing in one quorum and reading by another one there will be a
witness of the correct value (the Byzantine nodes may store an old/wrong
value)

e this is enough if data authenticated
e as in the proof of the theorem above:
L(S)2V(f+1)/n
e f-masking grid system: a quorum is a column and f 4 1 rows, required:
2f+1<n
e M-Grid: v/f +1 rows and +/f + 1 columns , quorums intersection have
2/ F +1%2=2(f + 2) nodes

Opaque systems
— assume there is no data authentication
— two quorums intersect: () is up-to-date, Q5 is not

— for any set F' of f Byzantine nodes we require that the number of nodes
in the intersection @1 N Q2 \ F is bigger than the number of nodes in
F N Q3 (cheating nodes) U Q2\ Q1 (old values)

— would be great but...
Theorem. For any f opaque system L(S)>0.5
Proof.

i. size of @1 N Q2 is at least half of the size of (@ because of the
condition on opaque systems

ii.

iii.

load on (1:

D> PQ) =) > PrQ) =) (Qi/2) -
vEQR: VvEQ; i ve(QiNQ1) i

Pz(Qi) =[Q1]/2

now by pigeonhole principle: there must be some node in ¢ with
at least load 0.5

I11.

Beyond von Neumann machines

Quantum computing and Shor factorization algorithm

Problem and its algebraic context:

— given

an RSA number n=p- ¢ for prime factors p and ¢ of a similar size,

the goal is to find p or ¢

— many

modern crypto products are based on difficulty of this factorization

problem. There are many software systems and embedded devices with

RSA,

no update is possible

— in order to break factorization problem it suffices to learn a nontrivial
root r of 1:

r+—1

r2=1modn

indeed

r2—1=(r—1)(r+1)=0 modp-q
therefore p divides either r —1 or r+1

if p divides r — 1 then g cannot divide » — 1 as then r — 1 would
be at least n, but r—1<n

in this situation we compute GCD(n,r — 1), the result must be p

if p divides r 4+ 1 then gcannot divide r 4+ 1 and therefore ¢ must
divide r — 1. In this case GCD(n,r — 1) yields ¢

— if for a given a <n we find s such that a®*=1, then with probability >0.5

we get a

/2 as a nontrivial root of 1. Indeed:

e by Chinese Reminder Theorem a number a < n is represented by

ap=amod p and a;=amod ¢

e given ¢ and b we may compute representation of a - b mod n by

computing a,-b,mod p and a4-b,mod ¢

e there are two roots of 1 modulo prime number p: 1 and p — 1
e if a®*=1mod n, while a®/?+ 1 mod n, then a*/?mod p is 1 or —1
e there are the following cases:

1. a*/?=1mod p, a*/?>=—1mod ¢

2. a*/?*=—1mod p, a®/?=1mod ¢

3. a*/?*=—1mod p, a®/?=—1mod ¢

the last case corresponds to —1 modn, the first two ones
to a nontrivial roots of -1

— so it suffices to find such an s - the order of a. By repeating the procedure

for different a’s we finally find a nontrivial root of —1 modn
Qubit

the concept is as follows:

— instead of a bit with discrete states 0 and 1 we have a linear combination
of basis vectors denoted by |0) and |1):

a-[0)+p-[1)

— with «, 8 complex numbers

— ameasurement of - |0) +3-|1) yields |0) with pbb |a|? and |1) with pbb
|B]? - this is quite annoying but ...

— moreover: reading changes the state to the state read: if the result is
|0) then the physical state becomes |0) as well. There is no state «-|0) +
B-|1) anymore.

— In fact, this is the core of Shor’a algorithm - a reading operation
creates a change in a physical system that would be infeasible
to compute on a classical computer

— instead of a single bit we may have strings of qubits, say of length [where
I>n

Quantum operations and gates

— a quantum computer should perform some operations on qubits, technical
realization is a challenge, but in theory possible

— we consider [— qubit numbers as representing numbers mod 2! (well, this
is fuzzy as each bit is fuzzy as a qubit), in this way we a get quantum
state for each a < ¢ =2

— Hadamard transformation: an easy way to create a quantum state such
that takes any value a (denoted |a)) with the same probability. The way
to achieve this is:

— create the state |0....0)

— apply Hadamard transformation gate to it

— each ccordinate is transformed by

11
2\ 1,-1
R

\/§|0> +E|1>

so |0} is transformed to

— Quantum Fourier transform:
e regular FT: (zy,...,x2y) transformed to (y1,...., yn) where
1 N-—-1 27i-j-k)/N
pe= S el

e quantum:
S x;-]i) transformed to Y y;-|i) where

1 N-1 _ (27i-j-k)/N
= (2 jok)/

e in other words:
)= 5 Encg eTIRIN k)

wefficient implementation” based on similar algebra as for DFT
Shor’s algorithm (based on presentation of Eric Moorhouse)

1. fix ¢ such that 2n2 < ¢ <3n? ¢=2' (or a product of small primes)
we use states with 2 qubits, notation |a,b) or |a)|b)

2. prepare state |0,0) and apply Hadamard transformation to the first regi-
ster. Its result is a state

_L
|w>fﬁ ;| ,0)

3. fix z <n at random
4. to the state |¢) apply the quantum transformation
|a,0)—|a, x*mod n)

the result is
— |a, z*mod n)
\/(—1 a=0

(there is a theory how to make such a computation with quantum gates)

5. measure the second register. The result is some k. But then the measured

state changes to
M—1

’ Z |aak>

acA

2l-

where A is the set of all a such that 2% =kmodn
so A={ag,a0+7r,a0+2r....} and M =|A| (so M=~ q/r)

to

which is equal to

g—1 e2mi crao/qM

Z e?ﬂ'zcdr/q |C k)

c=0

27rz c- ao/ql\/[1

Z Z§d|ck:

g — e27ri~c-r/q

where

7. measure the first register (this is the key moment!!)

— which ¢ is read depends on the values of 224:—01 ¢?% which corre-
sponds to the probability
_¢M

— if ¢-r/q is not very close to an integer, then the sum is ¢

— if ¢-r/q is an integer, then we sum up M ones

— so the former case is unlikely and the readings are concentrated
around values ¢ such that

c/q=d/r
for an integer d

— the rest is a classical computation involving ¢, ¢ . The search space
is relatively narrow

IV. Boolean circuits, decision diagrams

Classics about Boolean functions

— Boolean functions: fixed number of input varaibles, values 0 and 1

representation:

formulae

DNF (construction: disjunction of all monomials where a mono-
mial represents one point where the function has value 1)

CNF (e.g. construct DNF for negation and then negate DNF, use
de Morgan principle)

the general problem is the number of function of n variables which
is 22" so by pigeonhole principle majority of them must have repre-
sentation of the length 2"

length of the representation depends very much on the method of
representation.
example: (z1V y1) A (x2V y2) Aeee. A2,V yn) (CNF is short),
but DNF is disjunction of the monomials of the form

(1A 2o Ao A\ 2)

where each z; is either x; or y;

Cook’s Theorem:

The following problem is NP-complete: given Booelan formula decide
whether it is satisfiable

(¢ is satisfiable if there is an assignent a for variables such that

p(a)=1)
for DNF formula satisfiability is easy, for CNF not

a formula ¢ is a tautology if for every assignment a we have ¢(a)=1.
Deciding if ¢ is a tautology is easy for CNF, but uneasy for DNF

Decision diagrams

INF operator if.. then .. else meaning (x A yg) V (-z A y1)

T — Yo, Y1

each function can be expressed with INF - Shannon principle:

f=(xoA fo)V (mz0A f1)

where f; is f where we assign value i for x(

formula with INF only: decision tree

decision diagram: if two nodes have the same graph of successors then
merge these nodes

result: directed acyclic graph of outdegree 2, leaf nodes with values 0,1

Problems:

— for two decision diagrams decide whether they corrspond to the same
function

— in particular: find out whether a diagram represents a tautology or is not
satisfiable

— combine decision diagrams of fy, f2 for the function f; @ f2 for a given
operation @

OBDD:

— solving the problems in general is impossible. So find a representation
where it becomes easy

— there are no miracles: the price to be payed is perhaphs a long represen-
tation of a Boolean function

— OBDD conditions:
e there is a fixed order of variables

e in OBDD diagram the variables must be tested according to their
order

e example: OBDD for XOR
[picture to come]

— construction of OBDD: follow the Shannon principle

ROBDD:
— reduced OBDD (ROBDD):

e if for a node v both outcoming edges point to the same node, then
v is eliminated

e if v and w have the same graphs of successors, then merge v and u

— Theorem: for each function f and ordering of variables there is exactly
one ROBBD for f

— Proof induction on the number of variables

Problem solving for ROBBD
— tautology: get ROBBD representation of f. If it is 1 then it is a tautology
— similar for satisfiability: RBDD representation is not 0
— so the procedure is:
e find OBDD representation

e perform reductions until no further steps possible

(due to the Theorem we stop in the same representation no
matter how we do it)

— problem: OBDD might have exponential size, so sometimes we fail
ROBDD and operations
— given ROBDD for f; and fs construct ROBDD for f; @ f2

— example:
many pictures to come

Applications

— example: 8 Queens Problem:
1. define conditions as Boolean formulas
2. convert to ROBBD
3. check whether it is 0

— model checking:
1. discribe a system via Boolean variables and conditions
2. define transitions
3. derive conditions after transitions

— CAD: controlling the state of a system via conditions expressed as
ROBDD’s
the point is: relatively easy manipulations with operators

ALGORITHMIC PARADIGMS

V. Online Algorithms

(based on Susane Albers lectures)

Setting and problem formulation

the requests come online g, 01, ..., 0, in a unpredictable way
the request o; must be served immediately after it arrives
the overall cost of the service has to be optimalized

the problem: decision how to serve ¢; at the lowest cost depends on the
future (unknown) requests

the cost has to be compared with the optimal cost that occurs when we
are given the whole sequence oy, 01,..., 0, in advance

Paging Problem

fast memory holds up to k pages

in case of a memory request, the requested page is sought in the fast
memory, if not found there (,page fault”), then it is read from slow
memory

target: minimize the memory access time (= minimize the number of
page faults)

paradigm: leave in the fast memory the pages that will be used again

problem: if we read in a page we have to evict one from the fast memory,
which one?

problem: we do not know which will be used again,

Optimal offline strategy (OPT):

evict the page that will wait the longest time for its request

Competitive ratio

given algorithm A, the cost of A (the number of page faults) is denoted
by CA(U)

target: find ¢ and a such that
Ca(o)<c-Copr(o)+a

if ¢ is small we have a guarantee of quality

A is called c-compatitive in this case

warning: there might be A for which we cannot prove Cy(o) < ¢ -
Copr(0) + a but nevertheless A behaves well

LRU Strategy

least recently used page is evicted

deterministic strategy

e LRU is k-compatitive:

assume that LRU and OPT start with the same pages in the fast
memory

define epochs: LRU has exactly k faults on epoch P(i) for i > 1
and at most k in epoch P(0)

let oy, be the first request in P(i) (so oy,,,—1 is the last one)
let p be the last page requested in P(i —1)

Claim: P(i) contains k requests to different pages , none of them
to p

Corollary: OPT has at least one fault in P(7): as it has p in the
fast memory, it cannot hold other k£ pages from the claim

Corollary: Cprru(o) <c-Copr(c)+k
Proof of the claim:
— claim holds if LRU has faults on different pages #p
— assume that LRU has fault twice on ¢: 05, =¢q, 0s,=¢
i. ¢ is evicted at time t where s1 <t < s
ii. at this moment it is least recently used

iii. so in time si,...,t there are requests to k+ 1 pages,
so k of them #p

— assume the LRU does not fault twice but one of the faults
is p
i. p generates a fault at time ¢t > ¢;

ii. it must have been evicted by more recent pages in
time t;,...,t — 1

iii. there must have been k other pages requested

e LRU is the best possible:
Theorem: if a deterministic paging strategy is ¢ compatitive, then ¢ >k
Proof
for a deterministic strategy A and k+ 1 pages in total

i.

ii.

iil.

iv.

we choose a sequence of requests that each time the new request
is the page that is not in the fast memory

so A has 1 fault per request

on a request: OPT evicts the page that will not be requested during
the next k — 1 steps

so OPT has at most one fault per k requests

MARKING Algorithm

surprisingly simple randomized algorithm,

no immediate reason why it should be better than deterministic

Algorithm:

initially all pages in the fast memory unmarked

when a page fetched it becomes marked, a randomly chosen
unmarked page evicted

when all pages in the fast memory marked, then all marks removed
and the game starts again

quality measure: expected cost versus OPT

Theorem: MARKING is 2 Hi-compatitive against any oblivious adversary
that knows the requests in advance. That is

E[Cmarking(0)] <2Hy - Copr(o)

(He=Y1_, t~Ink)

1=1

Proof:

i

ii.

iil.

iv.

divide the time into phases: during a phase plus the first step of
the next phase: requests to exactly k+ 1 distinct pages, at the end
of the phase all pages marked

stale page = non-marked page that has been marked during the
previous phase

clean page: neither marked nor stale

goal to show: during a phase an amortized number of faults for
OPT is at least % while for MARKING the expected number is
at most ¢+ Hy

. analysis for OPT:

a) Sopr the pages in the fast memory for OPT, Sy — for
MARKINGS

b) d;y=|SopT\ Sam| at the beginning of the phase
c) dp=|SopT\ Sm| at the end of the phase

d) let ¢ be the number of clean pages requested during the
phase

e) no clean page is in the memory of MARKINGS, ¢ — d; clean
pages are neither in Sp; nor in Sopr

f) so OPT has at least ¢ — d; faults due to clean pages requests

g) at the end of the phase S); contains only pages requested
during the phase, d of these pages are missing in OPT, so
they have been evicted due to some faults

h) the cost is > max (¢ — dy, dF)

C—d[+dF_C dr dr

— >
max (¢ —dy,dp) > 5 575 5

i) sum up over all phases:
total cost > (number of all ¢’s) - % -0+

where 0 =initial dj
vi. analysis for MARKING for a phase:
a) serving c clean pages costs ¢ (all faults)

b) there are s=Fk — ¢ stale requests (pessimistically we assume
that k — ¢ are stale requests),

¢) we have to compute the expected cost for the ith request
to a stale page

d) ¢(i) denotes the number of clean pages requested up to the
ith stale request

e) there are k stale pages at the beginning, at the moment
of the request there are s(i) = k — i+1 stale pages not
requested so far

f) s(#) — (i) of them are still in the fast memory

g) the expected cost is

s(2) — c(4) (1) c
A8). A<=
B RO ()
h) by linearity of expectation the expected cost of the phase
is at most

Yao’s MINMAX Principle

the expected cost of a randomized algorithms for the worst input
>

the expected cost of the best deterministic algorithm for the input distribution ¢

mas (E[e(4,2)]) > min (E(a, X))

Proof.
the best way is to build a rectangle where

i. each row corresponds to a deterministic algorithm

ii. each column corresponds to an input
iii. each entry corresponds to cost

iv. max weighted sum over over a column must be at least minimal weighted
sum over a row

symbolic proof:
let C'= maxzex (E[c(A,x)]), D=mingeca (E(a, X))

C=> 002t Ele(Ad,2)]=Y" 0"y pa-cla,z)] =
Z pa'Z qz-C(a,:c)ZZ Pa-D=D

Version for online algorithms

the competitive ratio of the best randomized online algorithm against any obli-
vious adversary
>

the competitive ratio of the best deterministic online algorithm under a worst-
case input distribution

Theorem
For any randomized online algorithm for paging has competitive ratio >Hjy,

Proof

i. use Yao’s MinMax principle: it suffices to show competitive ratio for any
deterministic algorithm for carefully chosen input distribution

ii. input distribution:
— only k+1 pages used
— for t=1 choose page uniformly at random

— for t > 1 choose a page uniformly at random from the set of all
pages but not the last one chosen

iii. a phase defined so that within a phase requests to exactly k4 1 distinct
pages
iv. OPT has cost 1 per phase

v. deterministic algorithm:

a) at each step the expected cost is % as one of k pages that can be
requested is not in the fast memory

b) the expected length of a phase is k- Hy,

VI. RAPID MIXING ALGORITHMS

(mainly based on Randall’s paper)

idea: the algorithm is not computing something but performing a random
walk in a certain space

outcome:
— final ,random” position in the space
— history of the walk indicating some value

— sometimes a mixing based method of algorithm analysis

typical scenario:
— we wish to choose an element s € S at random
— the space S is complex, we have no way to enumerate its elements
— ... but we know at least some (non-random) elements of &

— ... and can perform a random walk through & through small
random modifications in the current state s€ S

challenges:
i. are all s €S reachable in this way?

ii. what is the probability distribution of the position after ¢ steps? Is
it close e.g. to the uniform one over S? How relevant is the starting
position?

examples: statistical physics: movements of a gas particle, shuffling of a
deck of cards

Markov chain

a (usually finite) set of states S

transition probabilities to change the state P(i, j) is the probability to
change the state from state s; to s;

stochastic process: discrete time steps: t =1, 2, 3, ..., at each step the
current state changed according to P
(memoryless process)

the initial state or probability distribution might be arbitrary
(e.g. we start in a fixed state)

what is the probability distribution 7; after t steps?

— example: shuffling a deck of cards:
— which technique to use? (random to top, ...)

— how many operations necessary?

Stationary distribution:

— a probability distribution 7 such that applying a single step does not
change it

— P-7=7 in a matrix notation

— we focus on Markov chains that have stationary distribution 7 (in most
cases the uniform distribution

— ... and where probabilites 7; converge quickly to 7 - rapid mizing

Ergodic chains:

1. irreducible: Vz, y3t P'(x, y) >0 (i.e. y can be reached from z in a long
run with a positive probability)
2. aperiodic: Vz,y ged{t: P!(z,y) >0}=1

Theorem
If a Markov chain is ergodic, then P! converges to the stationary distribution

Vo, y Pz,y)—n(y)

Example: independent set problem

given a graph G, then a set of vertices is independent if no two members of
I are connected with an edge in G.

we are looking for a random independent set in G

Markov chain
— transitions between independent sets that differ by at most one vertex
— with pbb % no change (self-loop) - lazy chain
— otherwise choose a vartex v at random:
— if v is in the independent set, then remove it

— if v is not in the independent set I then I := I U {v} provided
that the resulting set is an independent set

it is ergodic: lazyness helps to show it

Balanced Markov chains
— ergodic finite-state chain M with transition pbb matrix P
— m is a function mapping to [0, 1] with the property

m(z) P(z,y)=n(y) Py,)

- Yoa(z)=1

— THEN: 7 is the unique stationary distribution of M

Corollary: if P is symmetric then the stationary distribution is uniform

Reaching any other pbb distribution - Metropolis-Hastings algo-
rithm:
a step when starting at x

i. choose a neighbor y of = uniformly with pbb % where L is the maximum
possible degree in the graph

ii. move to y with pbb min(,%)
iii. otherwise stay at state x
Example for independent sets:
ﬂ-([) =)“I‘/Z7 where Z = Zlf independent sets)\‘I‘

— i I'=Tu{v}, then 7(I")==n(I)- A

— in this case transition probabilities:

P(I,I’):%-min(l,)\)

P(I',T) = % “min (1, A1)
Convergence measure - total variation distance
1
1Pt 7= max 3 [P!(y.) = m(x)
xr

Mixing time

7(¢) :min{||Pt/,7rH<e forall t'>t}
t

rapid mixing: 7(e)is a polynomial in 1/e and relevant state space parameters

Estimating the mixing time with eigenvalues of P
— the stationary distribution is eigenvector with eigenvalue 1

— eigenvalues 1 =X\g> A1 > Ao > ...\, for n X n matrix P

— THEOREM
let 7, = min {7 (x)}
then

o) S%Mlog(l/(m-e)

and

1
7(€) > mbg (1/€)

— a proof based on representation of the pbb distribution by a combination
of eigenvalues

Problems:

i. matrix P might be huge
ii. all states might be unknown
iii. computation effort might be enormous — so useless guarantee
Min Cut

— divide the set of states into S and €\ S, where S contains no more than
half of the states

— examine the chance to be ,trapped” within S
i. capacity of an edge (z,y): Q(x,y)=n(x) - P(z,y)

ii. conductance of S:

Zmes,ygs Q(.T, y)

s = (S)

iii. low conductance means that the chain is likely to stay within S
for a long time

— conductance of a chain: ® =ming (Pg) — the worst case for the sake of
the analysis

— Theorem:
®?/2 < Gap(P) <29
where spectral gap Gap(P)=1— |\]

1 1
— example: ®=—, then T(e)Zmlog(l/e)Zn-log(l/e)M

7(€) < 7=y log (1/(m. - €) <2n% log (1/ (. -)

— example 2: random walk in a circle

2
- &==
n

— example 3: complete graph, stationary distribution 7:

SIS
- Ppg=—25L " _q
S El El

- &=1
— 1—|X\|>0.5, 50 7(€) <2log(1/(n"1€) <2 (log(n) +log (1/e€))
— 1—]M| <2, s0 7(€) > log (n) +log (1/€)

Canonical path method

— consider the graph of states G, a edge (z, y) exists, whenever probability
to go from z to y is positive

— for each pair of nodes (states) define a ,canonical path” in G

— the paths should not create congestions (otherwise a time bound for
mixing is high)

— set of paths I': a path from z to y called 7, 4
— edge (a,b) congestion:
1
P(aab)—m' > w(x)-w(y)
(aﬂb)e’h:,y

— congestion compares the (weighted) number of paths that go through an
edge, to its capacity

— congestion for I':
p(I) =maxp(e)
— THEOREM: for any choice of I', reversible Markov chain:

1
o>
~2p(I')

Q(s.5)

— let S has the minimal conductance 05)

— aggregated flow over all paths between S and S is 7(S) - 7(S)
— aggregated capacity Q(S,S) so there is an edge e such that

1 a(S)n(S) _ w(9)/2 1
)= . m(x)mw(y) > = > = -
=g 2 =50 2 Q.5
— maximal path length [taken into account: p = p(T") -1
— THEOREM:
assumptions: Markov chain reversible, P(x,x) > 0.5, ergodic,
then:

A<1l—

Q=

— Example: random walk in the hypercube

i.

ii.

iii.

iv.

vi.

vii.

viii.

canonical path: flip the bits (if necessary)going from the left to the
right

stationary distribution is uniform, so 7 (z)7r(y) =272" for any z, v,
and finding p(e) requires finding the number of cannonical paths
going via e

if e changes bit ¢ then a canonical path from x to y uses e if z
has the same 7 bits as the starting node of e, and y has the same
n —isuffix — together 2"~ ! ways to choose z, y

Zee%c’y W(Z‘)W(y) :2n71 . 27271:277171
—_n 1
Qe)=27"-5-
p(I') = —26“15(:‘>(—m)ﬂ(y) =2ntl.p.2 " l=p

1
—\

the cannonical paths have length <n, so \; <1— %, or n?> il

so finally 7(¢) <n?(n-In2+Ine) as 7(e) < 1—;\/\1\111 (1/(ms-€)

COUPLING TECHNIQUE

easy for applications

Definition of coupling

1. Each of the processes X; and Y; is a faithful
copy of Markov chain M with predefined initial states x and y, respec-

tively

2. if X; and Y; reach the same state then X; =Y} foranyt’' >t

Coupling Lemma
if Pr(X;#Y;) <e, then || P!, 7| <e

Moreover,

T(e)<T-e-In(1/e)

where T'=max, ymin, {X;=Y;| Xo=2,Yo=y}]

(recall that 7(e) =min; {||P*,7||<e forall t'>t})

example: random walk over a hypercube

chain:

— with pbb 0.5 stay in the current state

— otherwise choose coordinate i and bit b, set the bit on position ¢ to b
coupling:

— processes coupled once each i visited at least once

— coupon collector problem 7(¢) =O(n-1In(n)-1n(1/¢))

PATH COUPLING
— metrics ¢ with integer values on the state space

— between each z and y there is a path, where each subsequent states are
at distance 1

— the maximum length of the path bounded by D (a parameter)

— transition via a random function f;: Pr(fi(z,...)=y)=P(z,y)

— randomness may be ,borrowed” from another process

— it suffices to consider the processes x;, y; at distance 1 and one step

— the most important parameter: = E[d(t41, Yt+1)]

i. if 8<1, then 7‘(e)<M

<55
ii. if /8: 17 and a<Pr(¢(zt+1, yt+1)7é ¢('rt7 yt))v then
2
0 <[C2]

- Intuition for these results:
... (during the classes)

Example: random coloring of a graph

— we assume that the number of colors k=3d + 1 where d is the maximum
degree

— Markov process:
i. with pbb 0.5 do nothing, otherwise:
ii. choose at random: a vertex v and a color ¢

iii. recolor v with ¢ if the result is a valid coloring, otherwise do
nothing

— distance: minimal length of a path where subsequent colorings on the path
differ on exactly one color

— the maximal distance is <2n if the number of colors is at least 3d + 1:
recoloring strategy:

— change color of v to a color that is not used by any neighbor of
v and by v in the start graph, destination graph and partially
recoloured graph,

— after recolouring all nodes one may change the colors of nodes to
the colors of the destination graph

— the transitions: choose (v, ¢) and attempt to change

— consider colorings r, s at distance 1 - differing at node w. Investigate
E[A¢(r, s)]:
1. case: v=w:
E[A¢(r,s)] < % . 7(kk7 4 (k — d colors would cause reducing
the distance to 0)

ii. case: v is the neighbor of w (d possibilities):
distance between r and s remain unchanged unless the color ¢
is the color of w in either r or s

ElAg(r,s)] < 2.2

iii. case: otherwise
the distance does not change

consequently: - .
EAG(r)| <5 =10
<l
— by path coupling
)< @n/e) — 1 —In@n/e)-(3d+1)n
1-(1-+=)

Example 2: mixing ballots in e-voting scheme
encrypted ballots
Randomized Partial Checking and pbb of undetected incorrect decodings
corresponding stochastic process

distance definition (via transpositions) - diameter n for permutations over n
elements

coupling: if in the same half then coupled, pbb %

In(n/e) 1
'T(E) Sm—2 (1nn+1nz)

VII. ROBUST OPTIMIZATION

Problem: given an optimization problem, where some parameters are
measured, but may be imprecise

e even without this assumption many problems are very hard (e.g. NP-
hard)

e making some values ,fuzzy” creates a horror for optimization

U-model
e some number of parameters are random variables

e cach of them has some probability distribution but with values within an
interval and pbb densities symmetric withing the interval

— one of possible models but the question is to find something where it is
possible to do something constructively

Robust optimization for linear optimization problems

linear optimization problem
— maximize ¢ - x
— subject to A-x<b

— and x>0

robust formulation (1973 Soyster):

— maximize ¢ - x

— subject to 37, Aj-a; <b where A; belongs to a convex set K

— and x>0
reduces nicely to

— subject to 37, Mj-x; <b where M; j=maxy,cx, (4i,;)
but the problem is that the conditions might be too strong and the guarantees
too conservative

other formulation:

some parameters uncertain: a; ; for j € J; means that the real value is
a random variable in the interval [a; ; — d; ;, ai,j + d; ;] with symmetric ppb
distribution

optimization:

— maximize ¢T -z

subject to Zj a;,j T; —|—Zj€Ji iy - Yi <b;
- —y;j<z;<y;

I<x<u

- y=0

V. Randomized Algorithms
TBA (notes of Jacek Cichon)

1. Randomized: przykSady: problem filozoféw, testowanie réwnoaci wielo-
mianoéw, prosty sposéb wyboru lidera

2. Randomized: MinCut, nieréwnoa~ Markowa, Czebyszewa, kolejne przy-
kSady, na koniec wpuacili mnie w dyskusjS o "Power of Two Choices" -
powiedzieli mi, te méwiSea o tym, ale chceli jeszcze raz o tym porozmawia”

3. Derandomizacja: MaxCut - metoda wartoaci oczekiwanej; wrociliamy do
MinCut, zauwatyliamy, te wystarczy niezaletnoa™ par, omowiliamy jak z k bitow
losowych motna zrobi” 2°k-1 parami niezaletnych zmiennych {0,1} (sumy po
podzbiorach modulo 2) i jak to motna wykorzysta~.

VII. COMMUNICATION COMPLEXITY

traditional complexity measures:

— based on von Neumann model of computing

— number of operations performed, memory size
reality:

— there are other important bottlenecks

— memory access cost gets tricky (flash memory - easy change from 0 to 1,
but changing 1 to 0 requires erasure of the whole block of data)

— there might be fixed resources, it matters only if one can implement
the algorithm given these resources, further optimization is not needed
(certain embedded devices)

— size of the code might be as important as memory used during execution
(smart cards)

— energy cost turns out to be crucial (cooling is the most difficult problem
in supercomputing centers)

Communication complexity (two-party model):
— Alice holds z, Bob holds y, they have to compute f(z,y)
— they proceed in communication rounds

— we count the total number of bits exchanged before both Alice and Bob
know f(z, y)

— the trivial solution is that Alice sends = to Bob, Bob computes f(z, y)
and says it to Alice

— Can we do better?

Why is it important:
— communication speed is much lower than any computation
— communication cost extreme in terms of energy

— another situation: VLSI design, if IV bits go from the left side to the right
side, there is place for r wires, then the computation time is at least N /r,

i. the number r cannot be increased without increasing the chip size
and price and time delay on connections

ii. r <+/A where A is the area of the chip
iii. T-vVA>N, or A-T?>N? — so called AT?bound

Example of a tricky solution:
e Alice holds a clique C' C GG, Bob holds an independent set I C G
o f(C,H=1CNI+D
e strategy:
i. if there is v € C' of degree <n/2 then Alice sends its name to Bob

ii. if v eI then f(C,I)=1, otherwise they recurse with the graph
induced by v and its neighbors

iii. if there is v € I of degree >n/2 then Alice sends its name to Bob

iv. if v € C then f(C,I)=1, otherwise they recurse with the graph
obtained by removing v and its neighbors

v. output f(C,I)=0 (as nodes of C have different degrees as nodes
of I)

e complexity O(log?n)

Rectangles

f represented by a matrix, where rows are labeled by possible iuts for
Alice, and columns are labeled by possible inputs for Bob. Entries repre-
sent the values of f

LEMMA: given a transcript P of communication, the input data (z,
y) that correspond to P form a rectangle

A rectangle is a set S such that if (z,y), (2, y’) € S, then (x,y’), (z',y) €S
as well

THEOREM: assume that there is no partition of {(x,y)| f(z,y) =1} into
less than T rectangles, then communication complexity is at least log (T")

“monochromatic rectangles” — rectangles with the same value of f

it suffices to show that {(z, y)| f(z,y) =1} cannot be covered by less
than T monochromatic rectangles

Fooling set

set of inputs (x1, 1), (22, ¥2), .-+, (Tn, yn) for which f is constant, but for
any 4, j, either f(x;,y;)or f(z;,y;) has a different value

so (zi, i), (x;,y;) cannot belong to the same monochromatic rectangle
and any cover has at least n elements

Example: f(z,y)=1iff ==y, fooling set: the set of all pairs (z,x)
Example: f(z,y)=1iff x <y, fooling set: the set of all pairs (z, z)

in both cases the size of the fooling set is 2* for kbit strings, so commu-
nication complexity is at least k

Corollary: for these problems there are no tricky solutions with low com-
munication

