
Zaawansowane Techniki Algorytmiczne

Mirosław Kutyłowski 2017

Katedra Informatyki WPPT, PWr

Plan wykładu

1. modele obliczeń

a. systemy równoległe

b. systemy rozproszone

c. sieci Boolowskie, OBDD

d. obliczenia kwantowe i inne modele odbiegające od modelu von
Neumanna

2. paradygmaty algorytmiczne

a. samostabilizacja

b. algorytmy aproksymacyjne

c. algorytmy dla danych rozmytych

d. algorytmy losowe

e. derandomizacja

f. algorytmy online

g. uniwersalne heurystyki

3. analiza złożoności

a. granice dolne

b. złożoność komunikacyjna

c. kombinatoryka analityczna

d. rapid mixing

e. rozwiązania dla ograniczonych zasobów

Cele
wykształcenie umiejętności w zakresie wykorzystania szerokiego spektrum

zaawansowanych technik algorytmicznych, umiejętności z zakresie analizy
poprawności i efektywności algorytmów

——————————————————————————————————————–

MODELS

—————————————————————————————————–

I. Parallel computing

parallel computing today:

− supercomputers

− clasters of computers tightly connected (supercomputing centers)

− multicore architectures

− hardware like graphic cards

− some embedded systems

limitations for increasing computing power:

– each operation consumes energy, physical limitations

– increasing speed (frequency of the processor clock) increases energy con-
sumption per second on a mm2

– the same efect of more dense layout - large scale of integration

– ... but the heat has to removed in order to prevent overheating. This is
hard (cooling systems)!

– ⇒ progress on single processor architectures has been stopped after rapid
progres during the 90’s

– parallelisation as a remaining option

types of parallel machines:

– program execution:

• SIMD - single instruction multiple data (all processors execute the
same code and are in the same place in the program, typically used
for „vector computations”, that is matrices and so

• MIMD - multiple instruction multiple data

– memory type:

• shared (all locations accessible by all processors, problems of con-
flicts)

• distributed (each processor has own memory, adressing remote
memory via its owner)

• hybrid (both types, shared memory slower and problematic, but
sometimes extremely useful)

– interconnections:

• mesh

• hypercube or its variants (butterfly, deBruijn)

• fat tree

– communication between the processors:

• MPI (Message Passing Interface) a standard for point-to-point
communication, buffers on endpoints, coordination: no message
delivered before it is sent

• shared memory (types: concurrent writes, collision, exclusive
write,...)

– coordination between processors:

• MPI: the programmer is fully responsible for it, logical structure
of the algorithm has to ensure proper execution

• shared memory: coordination from the global clock but ... latency,
conflicts, ...

example: compting OR of n bits on a PRAM machine:

− in time t each processor knows OR of P (t) values

− in time t each memory cell stores OR of M(t) values

− after writing: M(t+1)=P (t)+M(t)

− after reading: P (t+1)=M(t+1)+P (t)

− a Fibbonaci sequence
 .M(t), P (t),M(t+1), P (t+1)
 .

− grows almost like exponentially, but not exactly

− so a careful design which address to read and write

• BSP (Bulk Synchronous Processing): supersteps, at the end of the
superstep everything synchronised again, during the superstep the
timing unpredictable

• LogP: a model with synchronous clock and limitation of latency
of communication

• L communication latency (time to deliver a message)

• o - overhead (time needed to send or receive a message), at
this time no other operation performed

• g - gap, time between consecutive transmissions of messages

• Example: computing a1 × a2 ×
 × an for an associative
operation ×:

− obviously, a tree structure for collecting data and
combining results

− check how big might be n given a time limit T

− for T ≤ L + 2o communication would cost more, so
compute everything locally

− otherwise the last step of the root is to combine
its result and the result obtained from another pro-
cessor, which has sent at time: T − 1−L− 2o

− ... so we may get a recursive expression for the
maximal n

– parallelisation:

• by hand: define processes (processes are assigned to processors by
the manager of a parallel machine)

• writing a code, giving to a compiler that recognizes parallelism and
transfers into appropriate code

• necessary to write programs with explicit parallelism in
mind

• in some languages explicit declarations

generally: a weak point (people think sequentially)

application areas:

– numerical computations of linear algebra

– all spacial computations (2D, 3D,..) for instance in civil engineering,
weather forecast,

– crypto - code breaking via brute force and many search algorithms

– bioinformatics, genetics, chemistry (simulating as a cheap and fast initial
stage of design to eliminate most of wrong directions)

– modelling complex systems

computational complexity for parallel computing:

– time (sometimes called depth) from the start to the moment when the
output is ready

• if there is no fixed termination time it might be problematic to
reach consensus when the computation has been finished

– work = the total amount of steps executed by all processors involved

• generally the work cannot be lower than in case of a sequential
execution (a sequential machine can always simulate a parallel
computation)

• typically the price for time speed-up is an increase of work

main problems:

– time to market

– correctness of algorithms (practically infinite number of options for timing
options of interprocessor communication)

– most programmers cannot think in terms of parallel programs

– some problems cannot be solved faster by parallel machines

Example of inherently non-parallel task:

compute Hn for a given I, t and n, where H0= I, Hi+1=Hash(Hi, i, t)
Hash is a crytographic hash function

Knowledge assumption (simplified version, one of fundamental assum-
tions for many cryptographic constructions): if a system learns h and y such
that h = Hash(y) then with very high probability y must appear during the
computation before h

Many algorithmic problems seem to be hard to parallelize. It is an
open theoretical question whether, say, all problems solvable in polynomial time
can be executed in much shorter time by a parallel machine.

Some issues:

→ load balancing (utilize processors evenly):

– sophisticated approaches or

– random strategies (e.g. choose two processors at random and
assign the task to a processor with less load – so called „power
of two choices”)

→ symmetry breaking: if no IDs assigned to processes then processes
might be in exactly the same state and who should take which role.
Solution: based on random choice

→ concensus: processes might have a different understanding of the global
state

→ Byzentine agreement: the messages might be undelivered. What to do
in this case? A majority 2/3 of nonmalicious processors should be able
to make a decision

(Byzantine agreement problem: there are two Byzantine armies. If
they attack the enemy at the same time, then they win. Communication
between the armies is via messengers that go through the enemy territory.
The messangers can be captured - the sender cannot be sure that the
message arrived at the destination)

ALGORITHM EXAMPLES
(borrowed from Parallel Algorithms by G.Blelloch and B. Maggs)

PARALLEL PREFIX: compute
∑

i=1
j

A[j], simultaneously for j=1,2,
 ., n

ALGORITHM: ParallelPrefix(A)
1 if |A|=1 then return A[0]
2 else
3 S=ParallelPrefix({A[2i] +A[2i+1]}i=1,
 ,|A|/2)

4 R[i]8 S[i/2] if i even, else R[i]8 S[i− 1/2]+A[i] for i≤n

array R is the output

Work: W (n)=W (n/2)+O(n) so W (n)=O(n)
Time D(n)=D(n/2)+O(1) so D(n)=O(log n)

POINTER-JUMPING: given a directed acyclic graph (e.g. a tree), find the
root for each vertex

ALGORITHM: pointer-jumping(P)
1 for j from 1 to ⌈log |P |⌉
2 P 8 P [P [i]] for i≤ |P |

– at each iteration the poiter jumps forwards, the exception are the roots
that point to themselves

– if the pointer already is to the root then the pointer does not change

– generally, the length of jumps double at each iteration, as the maximal
path has length |P |, no more than log |P | iterations are needed

LIST-RANKING: given a list represented via pointers, find the distance of
each vertex from the head of the list

idea: like pointer jumping, but keep counting the distance to the node shown
by the pointer

ALGORITHM: list-ranking(P)
1 assign V [i] = 1 unless P [i] = i (pointer to itself)
2 for j from 1 to ⌈log |P |⌉
3 V [i]8 V [i] +V [P [i]] for i≤ |P |

4 P 8 P [P [i]] for i≤ |P |

V is the output

Work is Θ(n log n) . Bad!

a typical improvement via random sampling:

– choose n/log n start nodes at random

– from each start node walk (1 process per start node, the walk is sequen-
tial) until another start node is encountered

– with high probability each walk stops after O(log n) steps

– solve the LIST-RANKING problem with the list of start nodes and ini-
tialized not with 1 but the distance to the next start node

– for the reduced problem the previous algorithm can be applied, it requires
O(n/log n· log (n/log n))=O(n) work, – so within the bound O(n)

– walk back (in parallel starting from each starting node) and compute the
distances on the way

execution time remains logarithmic, but the work is time·
number of processsors=O(log n·n/ log n)=O(n)

REMOVING DUPLICATES: array contains entries, some of them appear
more then once. Remove duplicates (leave only one position for a given value)

– if the range of the elements is small, the problem is easy to solve:

• (in parallel) read a position in the input array,

• if z found then write z into the output array R[z]8 z

concurrent write is necessary

a solution based on hashing:

ALGORITHM: remove-duplicates(V)
1 choose a prime m higher than 2 · |V |
2 fill TABLE with −1
3 i8 0
4 R8 {}
5 while |V |> 0
6 in TABLE insert value j in position hash(V [j],m, i) for each j

7 WINNERS 8 {V [j]:TABLE(hash(V [j],m, i) = j)}
8 append R with the list of winners
9 in TABLE insert value hash(k,m, i) in position k for each k in WINNERS h

10 leave in V only those k, for which TABLE[hash(k,m, i)�k]
11 i8 i+1

RESULT is the output

– fine tuning regarding the choice of m at each stage

– appending the list of winners requires parallel prefix

– too small m means a lot of collisions

– each stage uses a different i, so hash values are unrelated

SORTING

− QUICKSORT is an inherently parallel algorithm

− but RADIXSORT works also fine (requires that the valus are b bit num-
bers, time O(b · log n), work O(b ·n)

ALGORITHM: radixsort(A, b)
1 for i=0,
 , b− 1
2 flags8 {(a≫ i)mod 2: a∈A}
3 notflags 8 1−flags
4 R08 parallelprefix(notflags)
5 s08 sum(notflags)
6 R18 paralleprefix(flags)
7 R[j]8 R0[j] if flags[j] = 0, else R[j]8 R1[j] + s0 (computing ranks)

8 rewrite A: value A[j] moved to position R[j]

A is the output

properties:

– stable sorting (order of the same elements preserved)

– first reorder according to the least significant bit, then 2nd, ...

CONNECTED-COMPONENTS: label all vertices in a component with the
same label, different label for different connected components

– possible with BFS but inefficient

– solution based on graph contraction

ALGORITHM: randomcontraction(LABELS, E)
1 if (|E |=0 then return LABELS
2 else

3 each vertex chooses a bit at random, a vertex called a child if 1 chosen
4 HOOKS8 {(u, v)∈E: child[u] = 1 and child[v] = 0}
5 put in LABELS values from HOOKS
6 E ′

8 {(LABELS[u],LABELS[v]: (u, v)∈E andLABELS[u]� LABELS[v]}
7 LABELS′

8 randomcontraction(LABELS, E ′)
8 insert to LABELS′ entries (u,LABELS′[v]) for (u, v)∈HOOKS

LABELS’ returned

ALGORITHM: deterministiccontract(labels, E)
1 if (|E |=0 then return LABELS
2 else
3 HOOKS8 {(u, v)∈E:u> v }
4 put in LABELS values from HOOKS
6 with pointer jumping assign LABELS according to the roots of local trees
7 E ′

8 {(LABELS[u],LABELS[v]: (u, v)∈E and labels different}
8 return deterministiccontract(LABELS, E ′)

sometimes works badly:
a star graph with labels 1..n outside and label n in the middle of the star
– n recursive calls are necessary

—————————————————————————————————–

II. Distributed computing

(notices from the script of R. Wattenhofer, ETH Zurich)

Coloring algorithms

Quorum Systems

Quorum system idea:

• there are n servers, data is to be stored on all of them

• however, doing it at once is hard

• if we update a record on a subset of servers (a quorum) - we lock it and
update

