
Zaawansowane Techniki Algorytmiczne

Mirosław Kutyłowski 2017

Katedra Informatyki WPPT, PWr

Plan wykładu

1. modele obliczeń

a. systemy równoległe

b. systemy rozproszone

c. sieci Boolowskie, OBDD

d. obliczenia kwantowe i inne modele odbiegające od modelu von
Neumanna

2. paradygmaty algorytmiczne

a. samostabilizacja

b. algorytmy aproksymacyjne

c. algorytmy dla danych rozmytych

d. algorytmy losowe

e. derandomizacja

f. algorytmy online

g. uniwersalne heurystyki

3. analiza złożoności

a. granice dolne

b. złożoność komunikacyjna

c. kombinatoryka analityczna

d. rapid mixing

e. rozwiązania dla ograniczonych zasobów

Cele
wykształcenie umiejętności w zakresie wykorzystania szerokiego spektrum

zaawansowanych technik algorytmicznych, umiejętności z zakresie analizy
poprawności i efektywności algorytmów

——————————————————————————————————————–

MODELS

—————————————————————————————————–

I. Parallel computing

parallel computing today:

− supercomputers

− clasters of computers tightly connected (supercomputing centers)

− multicore architectures

− hardware like graphic cards

− some embedded systems

limitations for increasing computing power:

– each operation consumes energy, physical limitations

– increasing speed (frequency of the processor clock) increases energy con-
sumption per second on a mm2

– the same efect of more dense layout - large scale of integration

– ... but the heat has to removed in order to prevent overheating. This is
hard (cooling systems)!

– ⇒ progress on single processor architectures has been stopped after rapid
progres during the 90’s

– parallelisation as a remaining option

types of parallel machines:

– program execution:

• SIMD - single instruction multiple data (all processors execute the
same code and are in the same place in the program, typically used
for „vector computations”, that is matrices and so

• MIMD - multiple instruction multiple data

– memory type:

• shared (all locations accessible by all processors, problems of con-
flicts)

• distributed (each processor has own memory, adressing remote
memory via its owner)

• hybrid (both types, shared memory slower and problematic, but
sometimes extremely useful)

– interconnections:

• mesh

• hypercube or its variants (butterfly, deBruijn)

• fat tree

– communication between the processors:

• MPI (Message Passing Interface) a standard for point-to-point
communication, buffers on endpoints, coordination: no message
delivered before it is sent

• shared memory (types: concurrent writes, collision, exclusive
write,...)

– coordination between processors:

• MPI: the programmer is fully responsible for it, logical structure
of the algorithm has to ensure proper execution

• shared memory: coordination from the global clock but ... latency,
conflicts, ...

example: compting OR of n bits on a PRAM machine:

− in time t each processor knows OR of P (t) values

− in time t each memory cell stores OR of M(t) values

− after writing: M(t+1)=P (t)+M(t)

− after reading: P (t+1)=M(t+1)+P (t)

− a Fibbonaci sequence
 .M(t), P (t),M(t+1), P (t+1)
 .

− grows almost like exponentially, but not exactly

− so a careful design which address to read and write

• BSP (Bulk Synchronous Processing): supersteps, at the end of the
superstep everything synchronised again, during the superstep the
timing unpredictable

• LogP: a model with synchronous clock and limitation of latency
of communication

• L communication latency (time to deliver a message)

• o - overhead (time needed to send or receive a message), at
this time no other operation performed

• g - gap, time between consecutive transmissions of messages

• Example: computing a1 × a2 ×
 × an for an associative
operation ×:

− obviously, a tree structure for collecting data and
combining results

− we determine how big might be n given a time limit
T :

→ for T ≤ L + 2o communication would cost
more, so compute everything locally

→ otherwise the last step of the root is to com-
bine its result and the result obtained from
another processor, which has sent at time:
T − 1−L− 2o

→ ... so we may get a recursive expression for
the maximal n

– parallelisation:

• by hand: define processes (processes are assigned to processors by
the manager of a parallel machine)

• writing a code, giving to a compiler that recognizes parallelism and
transfers into appropriate code

• necessary to write programs with explicit parallelism in
mind

• in some languages explicit declarations

generally: a weak point (people think sequentially)

application areas:

– numerical computations of linear algebra

– all spacial computations (2D, 3D,..) for instance in civil engineering,
weather forecast,

– crypto - code breaking via brute force and many search algorithms

– bioinformatics, genetics, chemistry (simulating as a cheap and fast initial
stage of design to eliminate most of wrong directions)

– modelling complex systems

computational complexity for parallel computing:

– time (sometimes called depth) from the start to the moment when the
output is ready

• if there is no fixed termination time it might be problematic to
reach consensus when the computation has been finished

– work = the total amount of steps executed by all processors involved

• generally the work cannot be lower than in case of a sequential
execution (a sequential machine can always simulate a parallel
computation)

• typically the price for time speed-up is an increase of work

main problems:

– time to market

– correctness of algorithms (practically infinite number of options for timing
options of interprocessor communication)

– most programmers cannot think in terms of parallel programs

– some problems cannot be solved faster by parallel machines

Example of inherently non-parallel task:

compute Hn for a given I, t and n, where H0= I, Hi+1=Hash(Hi, i, t)
Hash is a crytographic hash function

Knowledge assumption (simplified version, one of fundamental assum-
tions for many cryptographic constructions):

if a system learns h and y such that h = Hash(y), then with very high
probability y must appear during the computation before h

Many algorithmic problems seem to be hard to parallelize. It is an
open theoretical question whether, say, all problems solvable in polynomial time
can be executed in much shorter time by a parallel machine.

Some issues:

→ load balancing (utilize processors evenly):

– sophisticated approaches or

– random strategies (e.g. choose two processors at random and
assign the task to a processor with less load – so called „power
of two choices”)

→ symmetry breaking: if no IDs assigned to processes then processes
might be in exactly the same state and who should take which role.
Solution: based on random choice

→ concensus: processes might have a different understanding of the global
state

→ Byzentine agreement: the messages might be undelivered. What to do
in this case? A majority 2/3 of nonmalicious processors should be able
to make a decision

(Byzantine agreement problem: there are two Byzantine armies. If
they attack the enemy at the same time, then they win. Communication
between the armies is via messengers that go through the enemy territory.
The messangers can be captured - the sender cannot be sure that the
message arrived at the destination)

ALGORITHM EXAMPLES
(borrowed from Parallel Algorithms by G.Blelloch and B. Maggs)

PARALLEL PREFIX: compute
∑

i=1
j

A[j], simultaneously for j=1,2,
 ., n

ALGORITHM: ParallelPrefix(A)
1 if |A|=1 then return A[0]
2 else
3 S=ParallelPrefix({A[2i] +A[2i+1]}i=1,
 ,|A|/2)

4 R[i]8 S[i/2] if i even, else R[i]8 S[i− 1/2]+A[i] for i≤n

array R is the output

Work: W (n)=W (n/2)+O(n) so W (n)=O(n)
Time D(n)=D(n/2)+O(1) so D(n)=O(log n)

POINTER-JUMPING: given a directed acyclic graph (e.g. a tree), find the
root for each vertex

ALGORITHM: pointer-jumping(P)
1 for j from 1 to ⌈log |P |⌉
2 P 8 P [P [i]] for i≤ |P |

– at each iteration the poiter jumps forwards, the exception are the roots
that point to themselves

– if the pointer already is to the root then the pointer does not change

– generally, the length of jumps double at each iteration, as the maximal
path has length |P |, no more than log |P | iterations are needed

LIST-RANKING: given a list represented via pointers, find the distance of
each vertex from the head of the list

idea: like pointer jumping, but keep counting the distance to the node shown
by the pointer

ALGORITHM: list-ranking(P)
1 assign V [i] = 1 unless P [i] = i (pointer to itself)
2 for j from 1 to ⌈log |P |⌉
3 V [i]8 V [i] +V [P [i]] for i≤ |P |

4 P 8 P [P [i]] for i≤ |P |

V is the output

Work is Θ(n log n) . Bad!

a typical improvement via random sampling:

– choose n/log n start nodes at random

– from each start node walk (1 process per start node, the walk is sequen-
tial) until another start node is encountered

– with high probability each walk stops after O(log n) steps

– solve the LIST-RANKING problem with the list of start nodes and ini-
tialized not with 1 but the distance to the next start node

– for the reduced problem the previous algorithm can be applied, it requires
O(n/log n· log (n/log n))=O(n) work, – so within the bound O(n)

– walk back (in parallel starting from each starting node) and compute the
distances on the way

execution time remains logarithmic, but the work is time·
number of processsors=O(log n·n/ log n)=O(n)

REMOVING DUPLICATES: array contains entries, some of them appear
more then once. Remove duplicates (leave only one position for a given value)

– if the range of the elements is small, the problem is easy to solve:

• (in parallel) read a position in the input array,

• if z found then write z into the output array R[z]8 z

concurrent write is necessary

a solution based on hashing:

ALGORITHM: remove-duplicates(V)
1 choose a prime m higher than 2 · |V |
2 fill TABLE with −1
3 i8 0
4 R8 {}
5 while |V |> 0
6 in TABLE insert value j in position hash(V [j],m, i) for each j

7 WINNERS 8 {V [j]:TABLE(hash(V [j],m, i) = j)}
8 append R with the list of winners
9 in TABLE insert hash(k,m, i) in position k for each k from WINNERS

10 leave in V only those k, for which TABLE[hash(k,m, i)�k]
11 i8 i+1

RESULT is the output

– fine tuning regarding the choice of m at each stage (trade-off between
efficiency - lower m means faster appending - and probability of collisions
-low m means a lot of collisions and many rounds

– appending the list of winners requires parallel prefix

– too small m means a lot of collisions

– each stage uses a different i, so hash values are unrelated

SORTING

− QUICKSORT is an inherently parallel algorithm

− but RADIXSORT works also fine (requires that the valus are b bit num-
bers, time O(b · log n), work O(b ·n)

ALGORITHM: radixsort(A, b)
1 for i=0,
 , b− 1
2 flags8 {(a≫ i)mod 2: a∈A}
3 notflags 8 1−flags
4 R08 parallelprefix(notflags)
5 s08 sum(notflags)
6 R18 paralleprefix(flags)
7 R[j]8 R0[j] if flags[j] = 0, else R[j]8 R1[j] + s0 (computing ranks)

8 rewrite A: value A[j] moved to position R[j]

A is the output

properties:

– stable sorting (order of the same elements preserved)

– first reorder according to the least significant bit, then 2nd, ...

CONNECTED-COMPONENTS:
definition: two vertices in a graph are in the same connected component if

there is a path from one vertex to the second vertex
goal: label all vertices in a component with the same label, different label

for different connected components

– one may try BFS search but it is inherently sequential and inefficient in
the parallel setting

– it is easier to solve the problem using graph contraction technique

ALGORITHM: randomcontraction(LABELS, E)
1 if (|E |=0 then return LABELS
2 else
3 each vertex chooses a bit at random, a vertex called a child if 1 chosen
4 HOOKS8 {(u, v)∈E: child[u] = 1 and child[v] = 0}
5 put in LABELS values from HOOKS (the child gets the label of the parent)
6 E ′

8 {(LABELS[u],LABELS[v]: (u, v)∈E andLABELS[u]� LABELS[v]}
7 LABELS′

8 randomcontraction(LABELS, E ′)
8 insert to LABELS′ entries (u,LABELS′[v]) for (u, v)∈HOOKS

LABELS’ returned

ALGORITHM: deterministiccontract(labels, E)
1 if (|E |=0 then return LABELS
2 else
3 HOOKS8 {(u, v)∈E:u> v }
4 put in LABELS values from HOOKS (the child gets the label of the parent)
6 with pointer jumping assign LABELS according to the roots of local trees
7 E ′

8 {(LABELS[u],LABELS[v]: (u, v)∈E and labels different}
8 return deterministiccontract(LABELS, E ′)

sometimes works badly:
a star graph with labels 1..n− 1 outside and label n in the middle of the star
– n recursive calls are necessary

—————————————————————————————————–

II. Distributed computing

(notices based on the script of R. Wattenhofer, ETH Zurich)

below 2 interesting general topics from distributed systems. These are only
to examples.

Problems:

− communication takes long time

− communication is unreliable: messages may disappear or come in a wrong
order

− network nodes may fail or even be malicious

− no direct coordination, the processors may have inconsistent view of the
computation as a whole

Client-server Systems

• multiple users

• multiple servers – executing the commands of the users

• each command form a user has to be executed on all servers

• problem with the order of receiving commands:

− servers X , Y store a=0

− client A asks to compute a: =a+1

− client B asks to compute a8 2 · a
− X receives order from A and then from B, result: a=2

− Y receives order from B and then from A, result: a=1

− inconsistency created!!

Serializer:

− a distinguished server that collects the commands from the clients and
send them to the servers in the same order

− problem: serializer is a single point of failure

− but the goal of deploying multiple servers was to avoid problem if some
server fails!

Locks:

− each client tries first to lock all servers and then execute the command

− no inconsistency

− but what if some server does not respond? the system is blocked

− some strategy to unlock the servers needed (when two clients lock suc-
cessfully different servers at the same time)

Idea of tickets:

− tickets issued to clients by the servers

− the tickets need not to be returned

− server accepts the commands with the most recently issued tickets only

PAXOS:

client server

——————————–initialization ————————————————

choose command c Tmax=0
t8 0 C =⊥

Tstore8 0
——————————– phase 1 ———————————————

t8 t+1
ask each server for a ticket

if t > Tmax then
Tmax8 t

respond ok(Tstore, C)
end if

——————————– phase 2 ———————————————
if a majority answers ok(
) then
Pick (Tstore,, C) with maximum Tstore

if Tstore> 0 then
c8 C

send propose(t, c) to the servers

if t8 Tmax then
C8 c

Tstore8 t

respond success

——————————– phase 3 ———————————————
if majority of answers success
send execute(c) to every server

properties:

− if (t, c) accepted and stored by majority of servers, then later each
propose(t′, c′) contains c′= c

→ take the smallest t∗ for which this is not true

→ there must be server s that has been envolved in both proposals

→ s received request for t∗ after it has stored (t, c) (otherwise t∗

would not be a valid ticket)

→ but then the response would ok(t, c) and then c′= c

→ no way to get ok(t′
′
, c′) as t∗ is the smallest one higher than t

Quorum Systems

Quorum system idea:

• there are n servers, data is to be stored on all of them

• however, doing it at once is hard

• if we update a record on a subset of servers (a quorum) - we lock it and
update

• in order to read a data the user checks all servers from some quorum and
takes the mot recent one

• (we may assume that the data are authenticated together with time
stamps so it is easy to see which version is the most recent one)

• different possibilities for quorums help as each server may fail to respond,
...

Problem:

• how to define quorums so that: any two quorums have non-empty inter-
section

• how to define access strategy: assign probability to each quorum and while
reading choose a quorum according to this probability

• examples:

− singelton: only one quorum consisting of one server

− majority: every set of at least n/2+ 1 servers

Quality of a solution: load

• LZ(v) is load of a server v for a strategy Z: the probability that the server
v will be read:

∑

v∈Q
Pr (strategyZ choosesQ)

• LZ(S) – the load of a strategy Z over a quorum S: max over all LZ(v)

• L(S)=LZ(S) for the best strategy Z

Quality of a solution: work

• WZ(S)−work for strategy Z is the expected size of a quorum chosen

• W (S)−work for the quorum S for the best strategy Z

Examples:
singelton: work=1, load=1

majority: work >n/2, load≈0.5

Theorem L(S)≥ 1/ n
√

− consider a quorum Q with the smallest size q

− claim: for some v∈Q, LZ(v)≥1/q, indeed: each time a quorum is accessed
at least one server from Q is accessed as well, the probabilities of quorums
sum up to 1 and they are „distributed” among q servers

− each time at least q servers are accessed, so there must be a server with
LZ(v)≥ q/n

− LZ(v)≥max (1/q, q/n) . The best choice is q= n
√

Grid quorum system:

• the servers form a grid d× d (n= d2)

• each quorum is a set consisting of a column and a row

• each two quorums have 2 points of intersection

• option 1: a row and a column truncated below this row (only one inter-
section guaranteed)

• option 2: one row plus server per row in the rows below

• load ≈2/ n
√

Locking problem:

• each access has to lock the quorum before writing (otherwise a newer
record might be overwrited by an older one)

• deadlock possible: e.g. in the grid system S1 and S2 intersect at s and s′:
S1 locks s
S2 locks s′

neither of them can proceed

• Distributed Locking algorithm:

i. lock the nodes of a quorum one by one, according to their id num-
bers in an increasing way

ii. if a locked server encountered then release all servers locked so far

• Claim: no deadlock possible
Observation: the process that has locked the server with the highest

id is either completed or can proceed (no node with a higher ID has been
locked so far)

Fault tolerance

• up to f servers may fail, still there should be a quorum disjoint with the
failed servers

• grid quorum system has f -resilience for f < n
√

, it is not n
√

fault resilient
(fail nodes on the diagonal)

Probabilistic failure

• with pbb p a server is not in the failure state

• What is the probability that a quorum system S fails? Notation: Fp(S)

• behavior: Fp(S) inspected for big n:

− for majority quorum system Fp(S)→ 0 for p< 0.5
(follows from Chernoff Bound:
for m independent binary variables xi and success pbb p

Pr

(

∑

i=1

m

xi< (1− δ)m · p
)

<e−m·p·δ2/2

− for grid system, Fp(S)→ 1

– we need at least one failed node per row to fail

– Fp(S)= (1− pd)d> 1−d · pd→1 (as (1+x)n> 1+x ·n for
x>−1

B-Grid (a clever construction for low failure probability)

− a grid with n= d ·h · r nodes, d colums

− h bands, each consisting of r rows

− ”minicolumn” is a column in a band

− quorum: a minicolumn in each band, additionally: in one chosen band:
an element in each minicolumn

− Fp(S)→ 0

– failure if in each band a complete minicolumn fails or in one band in each
minicolumn an element fails:

Fp(S)≤ (d(1− p)r)h+h(1− pr)d

– use d= n
√

, r= ln (d), p ≥ 2/3

– then (d(1− p)r)h ≤ (d(1/3)r)h= d
(

dln1/3
)

≈ d−0.1< 1/n

– then h(1 − pr) d<d(1 − pr) d<d
(

1 − dln2/3
)

d ≈ d(1 − d−0.4) d≈
d · e−d0.6

= d(−d0.6/ln d)+1≪ d−2≈ 1/n

Byzantine systems

• up to f servers may cheat

• f -disseminating: every intersection of quorums contains at least f + 1
servers, there is a quorum without Byzantine nodes

• so always at least one quorum survives (the Byzantine ones may pretend
to crash)

• after writing in one quorum and reading by another one there will be a
witness of the correct value (the Byzantine nodes may store an old/wrong
value)

• this is enough if data authenticated

• as in the proof of the theorem above:

L(S)≥ (f +1)/n
√

• f-masking grid system: a quorum is a column and f +1 rows, required:
2f +1≤ n

√

• M-Grid: f +1
√

rows and f +1
√

columns , quorums intersection have

2 f +1
√ 2=2(f +2) nodes

Opaque systems

− assume there is no data authentication

− two quorums intersect: Q1 is up-to-date, Q2 is not

− for any set F of f Byzantine nodes we require that the number of nodes
in the intersection Q1 ∩ Q2 \ F is bigger than the number of nodes in
F ∩Q2 (cheating nodes) ∪ Q2 \Q1 (old values)

− would be great but...
Theorem. For any f opaque system L(S)≥ 0.5
Proof.

i. size of Q1 ∩ Q2 is at least half of the size of Q1 because of the
condition on opaque systems

ii. load on Q1:
∑

v∈Q1

∑

v∈Qi

PZ(Qi) =
∑

i

∑

v∈(Qi∩Q1)

PZ(Qi) ≥
∑

i

(|Q1|/2) ·

PZ(Qi) = |Q1|/2

iii. now by pigeonhole principle: there must be some node in Q1with
at least load 0.5

