
Security and Cryptography 2016

Mirosław Kutyłowski

grading criteria: 50% exam, 50% assignments

skills to be learned: developing end-to-end security systems, they must be flawless!

rules: do not memorize the standards, they come and go. Only the skills are important

presence: obligatory during the lectures

————————————————————————————————————–

I. EXAMPLE TO LEARN FROM: PKI FAILURE

PKI, X.509 standard

• a certificate binds a public key with an ID of its alleged owner,

• a couple of other fields, like validity date, key usage, certification policy, ...

• certificate signed by CA (Certification Authority)

• tree of CA’s (or directed acyclic graph), with roots as “root of trust”

• status of a certificate may change - revocation

• checking status methods: CRL, OCSP

reasons for PKI failure (according to Bruce Schneier):

1. whom we trust and for what? why CA should be trusted??

2. who is using my key? (private key - there are really no clones??)

3. how secure is the verifying computer? (no cryptography can help is the verifier software is
cheating)

4. who is the signer? (ambiguity unless there is a trustworthy ID registry)

5. is CA an authority? (really not an authority for data contained in the certificate. Certificate
based on fake documents...)

6. is the user part of the security design? (no, the user is free to behave in a stupid way)

7. separation CA and RA brings new threats

8. How did CA verify the certificate holder? (certificate issued for ..., but how to know that
this was really this person)

9. How secure are the certification practices? (revocation, etc)

1

10. the customers wish to run single-sign-on

reasons for PKI failure (according to me):

a nice concept of digital signatures but

1. big infrastructure: time to build,

2. scope of necessary coordination,

3. lack of interoperability (sometimes as business goal)

4. necessary trust in roots

5. registration: single point of fraud, (e.g. with fake breeding documents)

6. responsibility of CA

7. cost - who will pay? For the end user the initial cost is too high.

8. legal strength of signatures

9. unsolved problem of revocation: possible to check the status in the past but not now

MAJOR PROBLEM: how to design/buy sound systems?

————————————————————————————————————–

II. COMMON CRITERIA FRAMEWORK

http://www.commoncriteriaportal.org/

Problem: somebody has to deploy a secure IT system, how to purchase it?

• problematic requirements according to BSI guide:

i. incomplete – forgetting some threats is common

ii. not embedded: not corresponding really to the environment where the pro-
duct has to be deployed

iii. implicit: custemer has in mind but the developer might be unaware of them

iv. not testable: ambiguous, source of legal disputes, ...

v. too detailed: unnecessary details make it harder to adjust the design

vi. unspecified meaning: e.g. “protect privacy”

vii. inconsistent: e.g. ignoring trade-offs

• specification-based purchasing process versus selection-based purchasing process

• the user is not capable of determining the properties of the product himself: too
complicated, too specialized knowledge required, a single error makes the product
useless

• specifications of concrete products might be useless for the customers – hard to
understand and compare the products

2

• informal specifications and descriptions, no crucial data

Idea of Common Criteria Framework:

• standardize the process of

• designing requirements (Protection Profile, PP) (customer)

• designing products (Security Target ST), (developer)

• evaluation of products (licensed labs checking conformance of implementation with
the documentation) (certification body)

• international agreement of bodies from some countries (USA, France, UK, Germany, India,
Turkey, Sweden, Spain, Australia, Canada, Malaysia, Netherlands, Korea, New Zeland,
Italy, Turkey) but Israel only “consuming”, no Poland, China, Singapore,

• idea: ease the process, reuse work, build up from standard components

• typically ST as a response for PP:

− more detailed

− maybe chooses some concrete options

− maybe fulfills more requirements (more PP)

− relation with PP should be testable

Value:

• CC certification does not mean a product is secure

• it only says that is has been developed according to PP

• assurance level concerns only the stated requirements , e.g. trivial requirements ⇒ high
EAL level (common mistake in public procurement: EAL level ... without specifying PP)

• but it is cleaning up the zoo of different assumptions, descriptions, ...

Example for PP: BAC (Basic Access Control)

• used to secure wireless communication between a reader and a e-Passport (of an old gener-
ation)

• encryption primitive

EM(K,S) =Enc(KBEnc, S)‖MAC(KBMac,Enc(KBEnc, S), S)

where the key K is (KBEnc,KBMac)

• steps:

1. The MRTD chip sends a nonce rPICC to the terminal

3

2. The terminal sends the encrypted challenge

ePCD=EM(K, rPCD, rPICC ,KPCD)

to the MRTD chip, where rPICC is the MRTD chip’s nonce, rPCD is the terminal’s
randomly chosen nonce, andKPCD is keying material for the generation of the session
keys.

3. The MRTD chip decrypts and verifies rPICC, responds with

ePICC=EM(K, rPICC, rPCD,KPICC)

4. The terminal decrypts and verifies rPCD

5. both sides derive KEnc,KMac from master key

KPICCXORKPCD

and sequence number derived from the random nonces (key derivation function)

• K derived from information available on the machine readable zone (optical reader applied,
not available via wireless connection)

• implementation: biometric passports.

• a simple system. Really?

Common Criteria Protection Profile Machine Readable Travel Document with ICAO
Application, Basic Access Control BSI-CC-PP-0055

1. Introduction

aimed for customers looking for proper products, overview

1.1 PP reference

basic data, registration data

Title: Protection Profile - Machine Readable Travel Document with ICAO Application and Basic
Access Control (MRTD-PP)

Sponsor: Bundesamt für Sicherheit in der Informationstechnik CC Version: 3.1 (Revision 2)

Assurance Level: The minimum assurance level for this PP is EAL4 augmented .

General Status: Final

Version Number: 1.10

Registration: BSI-CC-PP-0055

Keywords: ICAO, machine readable travel document, basic access control

1.2 TOE Overview

• Target of Evaluation

4

• "is aimed at potential consumers who are looking through lists of evaluated TOEs/Products
to find TOEs that may meet their security needs, and are supported by their hardware,
software and firmware"

• important sections:

• Usage and major security features of the TOE

• TOE type

• Required non-TOE hardware/software/firmware

• Definition, Type

which parts, which general purpose, which functionalities are present and which are missing,
e.g. ATM card with no contactless payments

• Usage and security features

crucial properties of the system (high level) and security features from the point of view of
the security effect and not how it is achieved

• life cycle

the product in the whole life cycle including manufacturing, delivery and destroying

• Required non-TOE hardware/software/firmware: other components that can be crucial for
evaluation

2. Conformance Claim

• CC Conformance Claim: version of CC

• PP claim: other PP taken into account in a plug-and-play way

• Package claim: which EAL package level

EAL packages:

• The CC formalizes assurance into 6 categories (the so-called "assurance classes" which
are further subdivided into 27 sub-categories (the so-called "assurance families"). In each
assurance family, the CC allows grading of an evaluation with respect to that assurance
family.

• 7 predefined ratings, called evaluation assurance levels or EALs. called EAL1 to EAL7, with
EAL1 the lowest and EAL7 the highest

• Each EAL can be seen as a set of 27 numbers, one for each assurance family. EAL1 assigns
a rating of 1 to 13 of the assurance families, and 0 to the other 14 assurance families, while
EAL2 assigns the rating 2 to 7 assurance families, the rating 1 to 11 assurance families, and
0 to the other 9 assurance families

• monotonic: EALn+1 gives at least the same assurance level as EALn in each assurance
families

5

• levels:

• EAL1: Functionally Tested:

− correct operation, no serious threats

− minimal effort from the manufacturer

• EAL2: Structurally Tested

− delivery of design information and test results,

− effort on the part of the developer than is consistent with good commercial
practice.

• EAL3: Methodically Tested and Checked

− maximum assurance from positive security engineering at the design stage
without substantial alteration of existing sound development practices.

− developers or users require a moderate level of independently assured security,
and require a thorough investigation of the TOE and its development without
substantial re-engineering.

• EAL4: Methodically Designed, Tested and Reviewed

− maximum assurance from positive security engineering based on good com-
mercial development practices which, though rigorous, do not require substan-
tial specialist knowledge, skills, and other resources.

− the highest level at which it is likely to be economically feasible to retrofit to
an existing product line.

• EAL5: Semiformally Designed and Tested

• EAL6: Semiformally Verified Design and Tested

• EAL7: Formally Verified Design and Tested

• assurance classes:

→ development:

− ADV_ARC - 1 1 1 1 1 1 architecture requirements

− ADV_FSP 1 2 3 4 5 5 6 functional specifications

− ADV_IMP - - - 1 1 2 2 implementation representation

− ADV_INT - - - - 2 3 3 “is designed and structured such that the likelihood of
flaws is reduced and that maintenance can be more readily performed without
the introduction of flaws”?

− ADV_SPM - - - - - 1 1 security policy modeling

− ADV_TDS - 1 2 3 4 5 6 TOE design

6

→ guidance documents

− AGD_OPE 1 1 1 1 1 1 1 Operational user guid ance

− AGD_PRE 1 1 1 1 1 1 1 Preparative procedures

→ life-cycle support

− ALC_CMC 1 2 3 4 4 5 5 CM capabilities

− ALC_CMS 1 2 3 4 5 5 5 CM scope

− ALC_DEL - 1 1 1 1 1 1 Delivery

− ALC_DVS - - 1 1 1 2 2 Development securit

− ALC_FLR - - - - - - - Flaw remediation

− ALC_LCD - - 1 1 1 1 2 Life-cycle definition

− ALC_TAT - - - 1 2 3 3 Tools and techniques

→ security target evaluation

− ASE_CCL 1 1 1 1 1 1 1 Conformance claims

− ASE_ECD 1 1 1 1 1 1 1 Extended components definition

− ASE_INT 1 1 1 1 1 1 1 ST introduction

− ASE_OBJ 1 2 2 2 2 2 2 Security objectives

− ASE_REQ 1 2 2 2 2 2 2 Security requirements

− ASE_SPD - 1 1 1 1 1 1 Security problem definition

− ASE_TSS - 1 1 1 1 1 1 TOE summary specification

→ tests

− ATE_COV 1 2 2 2 3 3 Coverage

− ATE_DPT 1 1 3 3 4 Depth

− ATE_FUN 1 1 1 1 2 2 Functional tests

− ATE_IND 1 2 2 2 2 2 3 Independent testing

→ vulnerability assesment

− AVA_VAN 1 2 2 3 4 5 5 Vulnerability analysis

• for example, a product could score in the assurance family developer test coverage
(ATE_COV):

− 0: It is not known whether the developer has performed tests on the product;

− 1: The developer has performed some tests on some interfaces of the product;

7

− 2: The developer has performed some tests on all interfaces of the product;

− 3: The developer has performed a very large amount of tests on all interfaces of the
product

• example more formal: ALC_FLR

• ALC_FLR.1:

− The flaw remediation procedures documentation shall describe the procedures
used to track all reported security flaws in each release of the TOE.

− The flaw remediation procedures shall require that a description of the nature
and effect of each security flaw be provided, as well as the status of finding a
correction to that flaw.

− The flaw remediation procedures shall require that corrective actions be iden-
tified for each of the security flaws.

− The flaw remediation procedures documentation shall describe the methods
used to provide flaw information, corrections and guidance on corrective
actions to TOE users .

• ALC_FLR.2:

− ALC_FLR.1 as before

− The flaw remediation procedures shall describe a means by which the developer
receives from TOE users reports and enquiries of suspected security flaws in
the TOE.

− The procedures for processing reported security flaws shall ensure that any
reported flaws are remediated and the remediation procedures issued to TOE
users.

− The procedures for processing reported security flaws shall provide safeguards
that any corrections to these security flaws do not introduce any new flaws.

− The flaw remediation guidance shall describe a means by which TOE users
report to the developer any susp ected security flaws in the TOE.

• ALC_FLR.3:

− first 5 as before

− The flaw remediation procedures shall include a procedure requiring timely
response and the automatic distribution of security flaw reports and the asso-
ciated corrections to registered users who might be affected by the security flaw.

− next 3 as before

− The flaw remediation guidance shall describe a means by which TOE users
may register with the developer, to be eligible to receive security flaw reports
and corrections.

− The flaw remediation guidance shall iden tify the specific points of contact for
all reports and enquiries about security issues involving the TOE.

8

CEM -Common Evaluation Methodology

• given CC documentation, EAL classification etc, perform a check

• idea: evaluation by non-experts, semi-automated, mainly paper work

• mapping:

− assurance class ⇒ activity

− assurance component ⇒ sub-activity

− evaluator action element ⇒ action

• responsibilities:

− sponsor: requesting and supporting an evaluation. different agreements for the
evaluation (e.g. commissioning the evaluation), providing evaluation evidence.

− developer: produces TOE, providing the evidence required for the evaluation on
behalf of the sponsor.

− evaluator: performs the evaluation tasks required in the context of an evaluation,
performs the evaluation sub-activities and provides the results of the evaluation
assessment to the evaluation authority.

− evaluation authority: establishes and maintains the scheme, monitors the evaluation
conducted by the evaluator, issues certification/validation reports as well as certifi-
cates based on the evaluation results

• verdicts: pass, fail, inconclusive

• parts:

− evaluation input task (are all documents available to perform evaluation?)

− evaluation sub-activities

− evaluation output task (deliver the Observation Report (OR) and the Evaluation
Technical Report (ETR)).

− demonstration of the technical competence task

3 Security Problem Definition

• Object Security Problem (OSP): "The security problem definition defines the security
problem that is to be addressed.

– axiomatic: deriving the security problem definition outside the CC scope

– crucial: the usefulness of the results of an evaluation strongly depends on the security
problem definition.

– requires work: spend significant resources and use well-defined processes and analyses
to derive a good security problem definition.

• good example:

9

Secure signature-creation devices must, by appropriate technical and operational means,
ensure at the least that:

1) The signature-creation-data used for signature-creation can practically occur only once,
and that their secrecy is reasonably assured;

2) The signature-creation-data used for signature-creation cannot, with reasonable assur-
ance, be derived and the signature is protected against forgery using currently available
technology;

3) The signature-creation-data used for signature-creation can be reliably protected by the
legitimate signatory against the use of others

• assets: entities that someone places value upon. Examples of assets include: - contents of a
file or a server; - the authenticity of votes cast in an election; - the availability of an electronic
commerce process; - the ability to use an expensive printer; - access to a classified facility.

no threat no asset!

• Threats: threats to assets, what can happen that endengers assets

• Assumptions: assumptions are acceptable, where certain properties of the TOE environ-
ment are already known or can be assumed

this is NOT the place for putting properties derived from specific properties of the TOE

4. Security objectives

• "The security objectives are a concise and abstract statement of the intended solution to
the problem defined by the security problem definition. Their role:

- a high-level, natural language solution of the problem;

- divide this solution into partwise solutions, each addressing a part of the problem;

- demonstrate that these partwise solutions form a complete solution to the problem.

• bridge between the security problem and Security Functional Requirements (SFR)

• mapping objectives to threats: table, each threat shoud be covered, each objective has
to respond to some threat

answers to questions:

− what is really needed?

− have we forgot about something?

• rationale: verifiable explanation why the mapping is sound

5. Extended Component Definition

• In many cases the security requirements (see the next section) in an ST are based on
components in CC Part 2 or CC Part 3.

• in some cases, there may be requirements in an ST that are not based on components in
CC Part 2 or CC Part 3.

10

• in this case new components (extended components) need to be defined

6.1 SFR (Security Functional requirements)

• The SFRs are a translation of the security objectives for the TOE. They are usually at a
more detailed level of abstraction, but they have to be a complete translation (the security
objectives must be completely addressed) and be independent of any specific technical solution
(implementation). The CC requires this translation into a standardised language for several
reasons: - to provide an exact description of what is to be evaluated. As security objectives
for the TOE are usually formulated in natural language, translation into a standardised
language enforces a more exact description of the functionality of the TOE. - to allow
comparison between two STs. As different ST authors may use different terminology in
describing their security objectives, the standardised language enforces using the same ter-
minology and concepts. This allows easy comparison.

• predefined classes:

- Logging and audit class FAU

- Identification and authentication class FIA

- Cryptographic operation class FCS

- Access control families FDP_ACC, FDP_ACF

- Information flow control families FDP_IFC, FDP_IFF

- Management functions class FMT

- (Technical) protection of user data families FDP_RIP, FDP_ITT, FDP_ROL

- (Technical) protection of TSF data class FPT

- Protection of (user) data during communication with external entities families FDP_ETC,
FDP_ITC, FDP_UCT, FDP_UIT, FDP_DAU, classes FCO and FTP

• There is no translation required in the CC for the security objectives for the operational
environment, because the operational environment is not evaluated

• customizing SFRs: refinement (more requirements), selection (options), assignment
(values), iterations (the same component may appear at different places with different
roles)

• rules:

check dependencies between SFR - In the CC Part 2 language, an SFR can have a depen-
dency on other SFRs. This signifies that if an ST uses that SFR, it generally needs to use
those other SFRs as well. This makes it much harder for the ST writer to overlook including
necessary SFRs and thereby improves the completeness of the ST.

security objectives must follow from SFR’s - Security Requirements Rationale section
(Sect.6.3) in PP

if possible, use only standard SFR’s

6.2 Security Assurance Requirements

• The SARs are a description of how the TOE is to be evaluated. This description uses a
standardised language (to provide exact description, to allow comparison between two PP).

——–

11

III. EIDAS REGULATION

goals:

• interoperability, comparable levels of trust

• merging national systems into pan-European one

• trust services, in particular: identification, authentication, signature, electronic seal, time-
stamping, electronic delivery, Web authentication

• supervision system

• information about security breaches

• focused on public administration systems. However, the rules for all trust services except
for closed systems (not available to anyone). Private sector encouraged to reuse the same
means.

tools:

• common legal framework

• supervision system

• obligatory exchange of information about security problems

• common understanding of assurance levels

technical concept:

• each Member State provides an online system enabling identification and authentication
with means from this Member State to be used abroad

• a notification scheme for national systems

• if notified (some formal and technical conditions must be fulfilled), then every member state
must implement it in own country within 12 month

identification and authentication:

• eID cards – Member States are free to introduce any solution, the Regulation attempts to
change it and build a common framework from a variety of (incompatible) solutions

• breakthrough claimed, but likely to fail

changes regarding electornic signature:

• electronic seal with the same conditions as electornic signature,

• the seal is aimed for legal persons

• weakening conditions for qualified electronic signatures: admitting server signatures and
delegating usage of private keys

12

new:

• electronic registered delivery service

• Webpage authentication

Example of requirements (electronic seal):

Definition:

“electronic seal creation device” means configured software or hardware used to create an electronic
seal;

“qualified electronic seal creation device” means an electronic seal creation device that meets
mutatis mutandis the requirements laid down in Annex II;

Art. 36

An advanced electronic seal shall meet the following requirements:

(a) it is uniquely linked to the creator of the seal;

(b)it is capable of identifying the creator of the seal;

(c)it is created using electronic seal creation data that the creator of the seal can, with a high level
of confidence under its control, use for electronic seal creation; and

(d) it is linked to the data to which it relates in such a way that any subsequent change in the
data is detectable.

Annex II:

(a) the confidentiality of the electronic signature creation data used for electronic signature creation
is reasonably assured;

(b) the electronic signature creation data used for electronic signature creation can practically
occur only once;

(c) the electronic signature creation data used for electronic signature creation cannot, with reason-
able assurance, be derived and the electronic signature is reliably protected against forgery using
currently available technology;

(d) the electronic signature creation data used for electronic signature creation can be reliably
protected by the legitimate signatory against use by others.

2. Qualified electronic signature creation devices shall not alter the data to be signed or prevent
such data from being presented to the signatory prior to signing.

3. Generating or managing electronic signature creation data on behalf of the signatory may only
be done by a qualified trust service provider.

4. Without prejudice to point (d) of point 1, qualified trust service providers managing electronic
signature creation data on behalf of the signatory may duplicate the electronic signature creation
data only for back-up purposes provided the following requirements are met:

(a) the security of the duplicated datasets must be at the same level as for the original datasets;

(b) the number of duplicated datasets shall not exceed the minimum needed to ensure continuity
of the service.

Art. 30

1. Conformity of qualified electronic signature creation devices with the requirements laid down
in Annex II shall be certified by appropriate public or private bodies designated by Member States.

notification system:

13

An electronic identification scheme eligible for notification if:

(a) issued by the notifying state

(b) at least one service available in this state;

(c) at least assurance level low;

(d) ensured that the person identification data is given to the right person

(e) ...

(f) availability of authentication online, for interaction with foreign systems (free of charge for
public services), no specific disproportionate technical requirements

(g) description of that scheme published 6 months in advance

(h) meets the requirements from the implementing act

Assurance levels:

• regulation, Sept. 2015, implementation of eIDAS

• reliability and quality of

• enrolment

• electronic identification means management

• authentication

• management and organization

• authentication factors

• posession based

• knowledge based

• inherent (physical properties)

• enrolment: (for all levels):

1. Ensure the applicant is aware of the terms and conditions related to the use of the
electronic identification means.

2. Ensure the applicant is aware of recommended security precautions related to the elec-
tronic identification means.

3. Collect the relevant identity data required for identity proofing and verification.

• identity proving and verification (for natural persons):

low:

1. The person can be assumed to be in possession of evidence recognised by the Member
State in which the application for the electronic identity means is being made and repre-
senting the claimed identity.

2. The evidence can be assumed to be genuine, or to exist according to an authoritative
source and the evidence appears to be valid.

3. It is known by an authoritative source that the claimed identity exists and it may be
assumed that the person claiming the identity is one and the same.

14

substantial: low plus:

1. The person has been verified to be in possession of evidence recognised by the
Member State in which the application for the electronic identity means is being made
and reprensenting the claimed identity

and

the evidence is checked to determine that it is genuine; or, according to an authoritative
source, it is known to exist and relates to a real person

and

steps have been taken to minimise the risk that the person’s identity is not the claimed
identity, taking into account for instance the risk of lost, stolen, suspended, revoked or
expired evidence; or

2. options related to other trustful sources

high: substantial plus

(a) Where the person has been verified to be in possession of photo or biometric identifi-
cation evidence recognised by the Member State in which the application for the electronic
identity means is being made and that evidence represents the claimed identity, the evi-
dence is checked to determine that it is valid according to an authoritative source; and the
applicant is identified as the claimed identity through comparison of one or more physical
characteristic of the person with an authoritative source; or ...

• electornic identification means management:

low:

1. The electronic identification means utilises at least one authentication factor.

2. The electronic identification means is designed so that the issuer takes reasonable steps
to check that it is used only under the control or possession of the person to whom it belongs.

substantial:

1. The electronic identification means utilises at least two authentication factors from differŋ
ent categories.

2. The electronic identification means is designed so that it can be assumed to be used only
if under the control or possession of the person to whom it belongs.

high:

1. The electronic identification means protects against duplication and tampering as well
as against attackers with high attack potential

2. The electronic identification means is designed so that it can be reliably protected by the
person to whom it belongs against use by others.

• Issuance , delivery and activation:

low:

After issuance, the electronic identification means is delivered via a mechanism by which it
can be assumed to reach only the intended person.

substantial:

After issuance, the electronic identification means is delivered via a mechanism by which it
can be assumed that it is delivered only into the possession of the person to whom it belongs.

high:

15

The activation process verifies that the electronic identification means was delivered only
into the possession of the person to whom it belongs.

• suspencion, revocation and reactivation:

all levels:

1. It is possible to suspend and/or revoke an electronic identification means in a timely and
effective manner.

2. The existence of measures taken to prevent unauthorised suspension, revocation and/or
reactivation.

3. Reactivation shall take place only if the same assurance requirements as established before
the suspension or revocation continue to be met.

• authentication mechanism:

substantial:

1. The release of person identification data is preceded by reliable verification of the elec-
tronic identification means and its validity.

2. Where person identification data is stored as part of the authentication mechanism, that
information is secured in order to protect against loss and against compromise, including
analysis offline.

3. The authentication mechanism implements security controls for the verification of the
electronic identification means, so that it is highly unlikely that activities such as guessing,
eavesdropping, replay or manipulation of communication by an attacker with enhanced-
basic attack potential can subvert the authentication mechanisms.

high:

.... by an attacker with high attack potential can subvert the authentication mechanisms.

• audit:

low:

The existence of periodical internal audits scoped to include all parts relevant to the supply
of the provided services to ensure compliance with relevant policy.

substantial:

The existence of periodical independent internal or external audits

high:

1. The existence of periodical independent external audits scoped to include all parts
relevant to the supply of the provided services to ensure compliance with relevant policy.

2. Where a scheme is directly managed by a government body, it is audited in accordance
with the national law.

——–

IV. eIDAS TOKEN SPECIFICATION, BSI

• Technical guideline, security mechanisms for electronic travel documents, not focused on
readers

• cryptographic mechanisms:

− Password Authenticated Connection Establishment (PACE)

16

− Terminal Authentication Version 2 (TA2).

− Chip Authentication Version 3 (CA3)

− Restricted Identification (RI)

− Pseudonymous Signatures (PS)

• procedures

− General Authentication Procedure (GAP)

− Enhanced Role Authentication (ERA)

− PIN Management

• terminal types:

− inspection system

− authentication terminal - government or private, terminal rights to be checked, GAP
must be used

− attribute terminal- extension of Authentication Terminal, ERA must be used

− signature management terminal - key creation, signature creation

− signature terminal - GAP must be used

− priviledged terminals: category: inspection terminals and some authentication termi-
nals explicitly authorized. Signature terminals are never priviledged

• user credentials:

− MRZ-Password

− CAN

− PIN - always blocking (RC reaches 0 then blocked)

− PUK - blocking or non-blocking

• password blocking: RC=0 password blocked, RC=1 - password suspended and the correct
CAN must be entered during the same session to resume the password. Resume is volatile.

• switching session context: a stack of protocols, when terminating a protocol we return to
the context on the top of the stack

• password authentication:

− PACE- global passwords, VERIFY-application local

− Inspection terminal SHALL use CAN or MRZ

− authentication terminal SHALL use PIN, but the CAN can be allowed by the ter-
minal

− signature terminal: PIN, CAN or PUK

17

• Extended Access Control:

− 1. Terminal Authentication v2: terminal SHALL generate ephemeral keys used later
for Chip Authentication, only standard parameters, ephemeral keys authenticated,
result: read/write access granted

− 2. Passive Authentication: terminal reads and verifies Security Objects, compares
the data obtained before PACE

− 3. Chip Authentication v2 or v3: afterwards secure channel restarted

• General Authentication Procedure:

i. password verification - PACE

ii. EAC

iii. read/write data

• Enhanced Role Authentication – authentication terminal with proper rules can proceed as
follows:

i. authentication terminal sends an ATTRIBUTE REQUEST to eIDAS token. token
makes a link between the request and the terminal’s sector

ii. restore session context of PACE, store context of Chip authentication

iii. EAC with attribute provider

iv. proceed attribute request, write the resulting attributes to the eIDAS token, the
access rights restricted to terminals with proper rights

v. restore session context: PACE, then Chip Authentication

vi. terminal may read the stored attributes

• online authentication:

− eID server: remote part of authentication terminal

− user device: interacts with user, eIDAS token and eID server, but not authorized to
read eIDAS token data, access rights only after authentication with the eID server

Protocol chart:

token user device eID server Attribute Provider

GENERAL AUTHENTICATION

————PACE————

————————————–EAC———————

———read data, perform special functions———

ERA

<————————————store attribute request

————– switch to PACE context ——————

18

<——————————————–EAC—————————————>
——————————————retreive attribute request——————>

—————————————–read data —————————————–>

<————–———————–store attribute ————————————–

———————————– switch to PACE context —————————–

— switch to e-ID session context —

————read attribute ———————————–>

• unauthenticated terminals:

i. password verification based on PACE:

− terminal does not show its type

− can choose password type

− after authentication secure messaging

ii. authentication with CAN resumes PIN

iii. updating retry counter

• authenticated terminals: after terminal authentication the terminal becomes authenticated

Cryptographic building blocks:

− hash H(m)

− compression function for public key: Comp(PK)

− projected representation of a public key Π(PK)

− symmetric key algorithms:

− deriving key for encryption KEnc=KDFEnc(K, [r])

− KMac=KDFMac(K, [r])

− Kπ=KDFπ(π)

− encryption and decryption

− MAC

− asymmetric algorithms:

− domain parameters

− keys (page 19):

− eIDAS: ephemeral on both sides

19

− Chip authentication: static on side of the chip

− Chip authentication version 3: ephemeral on both sides based on static Chip’s
key

− Restricted Identification: token uses a static key, sector public key, sector
specific identifier

− KA - key agreement (like DH)

− signatures, mapping to RSA and ECDSA described

Pseudonymous signature:

• used for anonymous signature and for Chip Authentication v3

• keys:

− domain parameters DM and a pair of global keys (PKM , SKM)

− public key PKICC for a group of eIDAS tokens, the private key SKICC known to the
issuer of eIDAS tokens (called manager)

− for a token the manager chooses SKICC,2 at random, then computes SKICC,1 such
that SKICC=SKICC,1+ SKM · SKICC,2

− a sector (domain) holds private key SKsector and public key PKsector.

− a sector has revocation private key SKrevocation and public key PKrevocation

− sector specific identifiers IICC,1
sector and IICC,2

sector of the eIDAS token in the sector:

IICC,1
sector=(PKsector)

SKICC,1 and IICC,2
sector=(PKsector)

SKICC,2

• signing: with keys SKICC,1, SKICC,2 and IICC,1
sector and IICC,2

sector for PKsector and message m

i. choose K1,K2 at random

ii. compute

− Q1= gK1 ·(PKM)K2

− A1=(PKsector)
K1

− A2=(PKsector)
K2

iii. c=Hash(Q1, IICC,1
sector , A1, IICC,2

sector , A2,PKsector, m)

(variant parameters and Π omitted here)

iv. compute

− s1=K1− c · SKICC,1

− s1=K2− c · SKICC,2

v. output (c, s1, s2)

• verification:

20

compute

− Q1=(PKICC)
c · gs1 ·(PKM)s2

− A1=(IICC,1
sector)c · (PKsector)

s1

− A2=(IICC,2
sector)c · (PKsector)

s2

− recompute c and check against the c from the signature

• why it works?

(PKICC)
c · gs1 ·(PKM)s2=(PKICC)

c · gK1 ·(PKM)K2 · g−c·SKICC,1 ·(PKM)c·SKICC,2

=(PKICC)
c · gK1 ·(PKM)K2 · g−c·SKICC,1 ·(g)−c·SKM ·SKICC,2

=(PKICC)
c · gK1 ·(PKM)K2 · g−c·SKICC= gK1 ·(PKM)K2=Q1

• there is a version without A1, A2 and the pseudonyms IICC,1
sector , IICC,2

sector

PACE (Password Authenticated Connection Establishment)

• ICAO Doc 9303: Basic Access Control/PACE and EAC v1 (=Chip Authentication v1+
Terminal Authentication v1) MUST be used

• password based authentication protocol

• password on the side of the token: stored, on the terminal: input by the user

• steps:

i. token chooses s at random

ii. token computes z = Enc(Kπ, s), where Kπ = KDF(π) and sends z to the reader
together with the parameters DPICC

iii. the reader recovers s

iv. the reader and the token compute DMapped=Map(DPICC, s) (mapping function)

v. the reader and the token perform anonymous Diffie-Hellman key agreement based
on the ephemeral domain parameters (ephemeral values based on DMapped as an
generator), shared secret K obtained

vi. they create session keysKMac=KDFMac(K) and KEnc=KDFEnc(K)

vii. exchange and verification of tokens: TPCD=MAC(KMAC, ephemeral key of PICC)

TPICC=MAC(KMAC, ephemeral key of PCD)

viii. Secure Messaging restarted

Terminal authentication v2

• Chip Authentication MUST be performed after Terminal Authentication (condition
repeated in the description of CHA v2 only)

21

• simple challenge-response algorithm, undeniable, resistant to replay

• ephemeral public key for ChA as a side effect

• steps:

i. the terminal send the certificate chain to eIDAS token, it has to confirm the key
PKPCD

ii. the token checks PKPCD

iii. the terminal creates ephemeral pair of keys, sends the compressed version of PKPCD
CA

to the token

iv. token replies with a random nonce rPICC

v. the terminal signs with SKPCD the following data: rPICC, compressed version of

PKPCD
CA

vi. the token checks the signature

Chip authentication v2

• static DH authentication with the ephemeral key of the terminal

• steps:

i. the token sends its public key PKPICC

ii. the terminal sends ephemeral public key from TA (uncompressed)

iii. static DH key agreement with SKPICC and ephemeral public key on side of the
token, and PKPICC and ephemeral secret key on side of the terminal, master key K

generated

iv. token chooses rPICC, computes KEnc = KDFEnc(K, rPICC), KMac = KDFMac(K,

rPICC)

v. token computes the tag TPICC=MAC(KMac, ephemeral public key of the terminal)

vi. the terminal checks the tag

vii. secure messaging restarted using KEnc and KMac

Chip authentication v3

• alternative to Chip authentication v2 and RI

• claimed: “message-deniable strong authentication”, “pseudonymity without using the same
key on several chips”, “possibility of whitelisting eIDAS tokens”

• scheme:

i. phase 0: terminal authentication, ephemeral key for terminal in phase 1 chosen and
signed

22

ii. phase 1: key agreement like DH with ephemeral keys on both sides, restarting secure
messaging with new keys

iii. phase 2:

− static keys on the side of the chip: SKICC,1, SKICC,2 ,PKICC and the parame-
ters

− terminal sends PKsector to the chip, the chip compares it with the “compressed”
version received during Terminal Authentication

− chip reconstructs IICC,1
sector=(PKsector)

SKICC,1 and IICC,2
sector=(PKsector)

SKICC,2

− chip creates pseudonymous signature using IICC,1, IICC,2 as pseudonym and
the secret keys SKICC,1, SKICC,2 over the ephemeral key given by the terminal

• If PACE GM used before ChA v3 then one can reuse the ephemeral key from the terminal

• checking the key PKM is obligatory (otherwise it would be easy to forge the token)

Restricted Identification

• optional

• depending on the version, deanonymization might be possible or not (depending on PKsector)

• executed after Terminal Authentication and Chip Authentication (not specified which ver-
sion, but with v3 it does not makes sense)

• sector specific identifier computed as Hash(key computed via DH from PKsector and SKID)

• blacklisting impossible in case of group key compromise (from ChA v2)

Pseudonymous Signature as replacement of RI

• whitelisting possible in case of group key compromise (claimed as new but possible for RI)

• the second part from ChA v3, the key PKsector used as sector public key

PSA - Pseudonymous Signature Authentication

• the sector public key = the ephemeral public key from ephemeral DH key agreement (now
DH explicitly mentioned)

PSM - Pseudonymous Signature of a Message

• TA and ChA must be executed before

• message to be signed comes from the terminal

• public key unspecified

PSC - Pseudonymous Signature of Credentials

• used in combination with ERA

23

• Attribute Terminal involved, but eIDAS token creates the signature himself (after breaking
group key one can also create the PSC)

• public key unspecified

• terminal rights to get the attributes are to be checked

PROBLEMS:

• security properties not stated, they can be derived via tedious analysis

• lack of security proofs

• underspecified (details may turn the token to be insecure)

• powerful adversary able to break into the token may crate fake ID’s, unless whitelist
approach used

——–

V. STANDARS VERSUS SECURITY

It is not true that a standard solution is by definition a secure solution.

Standardisation process:

• representatives of countries, not necessarily specialists

• represent interests of industry

• target: a unified solution

• no open evaluation as in case of NIST competitions

• long process, many standards never used in practice

result: no guarantee for security

Example: Bleichenbacherr’s RSA signature forgery based on implemen-
tation error

• The attack works for PKCS-1 padding:

◦ a byte 0

◦ a byte 1

◦ string of 0xFF bytes

◦ a byte 0

◦ ASN.1 data

◦ hash

00 01 FF FF FF ... FF 00 ASN.1 HASH

24

• RSA signature verification: exponentiation with the public key, remove padding, check the
hash

• implementation based on the standard: recognize the structure 00 01 FF FF FF ... FF 00
and after them parse the hash

• attack mechanism:

− hash not right adjusted (padding short), after the hash there is a part that is not
parsed (it could be anything)

− concern RSA systems with public key 3 (sometimes it is done so to speed-up verifi-
cation)

− part after the hash adjusted so that the resulting number is a cube as an integer

− compute the root ... and this it the signature!

• attack variants: sosme fields declared but not checked. then Bleichenbacher’s freedom to
adjust the number to become a cube even if the hash is right justified

Chosen Ciphertext Attacks Against Protocols Based on RSA Encryption
Standard PKCS-1 – the Million Message Attack.

• RSA decryption device, returns an error message if the ciphertext not in PKCS-1 format
(HSM,...)

• the ciphertext c to be broekn is manipulated many times and based on error messages we
narrow the set of choices for the plaintext

• attack (find m such that md= cmodn:

1. phase: blind the ciphertext: c08 c · se mod n by choosing s such that c0 is a valid
PKCS-1 ciphertext.

− Observe c0
e=m · s and it starts with msb: 00, 02,

− let k the byte length of n, B=28(k−2)

− then 2B ≤m · s< 3B

− let M0= [2B, 3B − 1]

2. phase: narrowing the set of intervals defining s1<s2 <
 and M1, M2,
 such that
Mi+1⊂Mi, each Mi is a set of intervals

◦ if Mi−1 is a single interval [a, b] then choose small values si and ri such that

2B+ rin

b
<si<

3B + rin

a

and c0 · sie is PKCS-1 conforming

◦ if Mi−1 is not a single interval, then simply smallest si such that c0 · sie is
PKCS-1 conforming

◦ Mi consists of all intervals

[max
(

a,
2B+ r ·n

si

)

,min
(

b,
3B − 1+ r ·n

si

)

] for [a, b] from Mi−1 and

25

a · si − 3B+1

n
≤ r ≤ b · si − 2B

n

◦ when eventually Mi= [a, a] then set m= a · s0−1modn

The attack exploits such vulnerabilities like

• error messages returned by the attacked device when decryption fails on different stages of
the decryption algorithm

• different timings of execution of the decryption algorithm when the PKCS-1 encryption
padding is correct and when it is incorrect.

If a device supports the PKCS-1 encryption padding and the implementation of the PKCS-1
decryption on the device is vulnerable, then the million message attack works also when

• the ciphertext is calculated according to a padding different than PKCS-1

• the “ciphertext” is the plaintext for which we want to obtain a signature (dangerous for a
situation when the same key is used for decryption and for signatures, and decryption is
not PIN protected).

——–

VI. FORMAL SECURITY PROOFS

Security model e.g. for PACE

data confidentiality: nobody can understand any data from the communication between an eID
and a terminal, except for this eID and this terminal. By “data” we mean:

− workload data to be transmitted via the channel established according to the protocol,

− partner specific data (such as partner identity) - if sending them (explicitly or implicitly)
results from the protocol execution.

data integrity: a third person cannot manipulate without detection the data exchanged between
the eID and the terminal. This concerns in particular manipulating identity data.

session integrity: if a party A accepts at some moment a session executed presumably with a
single partner, then indeed this interaction of A emerged in interaction with a single partner.

partner authentication: if a partner A accepts a session as a session withparty C, then A indeed
has been talking with C until this moment (maybe with somebody playing man-in-the-middle, but
only passively). Partner authentication might be mutual or one-sided. In case of PACE, there is
one-sided authentication of an eID.

owner’s consent: eID is used only when the user agrees and with the terminal chosen by the user.

proof non-transferability: a party A interacting with a party B cannot prove against a third
party C that it is interacting with B, and cannot authenticate in this way the data received from B.
This should be understood that executing the protocol does not provide additional cryptographic
evidence over the data mentioned in the data confidentiality condition.

Case study: KEA

• Diffie-Hellman based key-exchange protocol, mutual authentication for the parties

26

• developed by NSA, declassified in 1998, no security analysis

• attacked in 2005, Lauter, Mityagin, extension KEA+ proposed, security proven by reduction
proofs

• naive protocol:

− party A chooses x at random and sends to B:

− gx and signA(g
x, B)

− party B chooses y at random and sends to BA:

− gy and signB(g
y, A)

− both: verify the signature, compute gx·y as for DH protocol

− attack:

− if ephemeral x of A from communication between A and B revealed, then ...

− the adversary resends gx and signA(g
x, B) to C and can impersonate A as

he can compute the session key

• KEA:

− A and B hold, respectively, the keys: private a and b, and public keys ga and gb

− A and B select ephemeral secret keys x and y at random and exchange gx and gy

− each party computes ga·y and gb·x (static DH protocol)

− session key computed as F (ga·y xor gb·x) (just like Blake-Wilson, D. Johnson, and

A. Menezes: Hash(ga·y , gb·x))

• Unknown Key Share (UKS) – a formal attack on KEA:

− Mallet registers the same key ga as Alice

− Alice starts a session with Bob but session intercepted by Mallet

− Mallet starts a session with Bob as Mallet

− Mallet forwards the values gx and gy

− therefore Alice and Bob compute the same session key

− Mallet corrupts one sesson and get a session key for the second one - contradicting
AKE security

• KEA+

− session key computed as F (ga·y, gb·x, A,B)

• KEA+C

− keys as for KEA

27

− A chooses x at random and sends gx

− B chooses y at random, computes L=Hash(ga·y, gb·x, A,B)

− B responds with gy and MACL(0)

− A computes L, checks MACL(0)and responds with MACL(1)

− B checks MACL(1)

• security properties:

• AKE (Authenticated Key Exchange)-

− the adversary controls all communication

− the adversary can corrupt some of the parties.

− the adversary must select an uncorrupted session called a test session and then
he is given a challenge, which is either the session key of the test session or a
randomly selected key.

− the adversary wins if can distinguish between these 2 cases.

• PFS (Perfect Forward Security):

− AKE experiment

− the adversary can corrupt a party A (reveal the long-term secret key),

− test session: a session of A occurred before corrupting A

• KCI (Key Compromise Impersonation)

− the adversary gets a long-term secret key of A

− attempt to impersonate as other party to A

− of course, the adversary can impersonate A to anyone

• advantage of the adversary A running algorithm A:

|Pr(A(data, real key)= 1)−Pr (A(data, randomkey))|

the advantage should be “negligibly small”

• reduction proofs:

→ assume that that there is an advarsary A breaking scheme U

→ choose a cryptographic assumption P

→ from a case p for P construct a case u for U

→ show how to run A on u

→ the environment need not to behave exactly as the scheme U

28

→ the difference between real U and the simulated one should be impossible to
detect by A

→ breaking u should lead to breaking p with a fair probability

→ finally: compute the advantage of the resulting adversary breaking p

• modelling via oracles:

− atomic actions that can be initiated by the adversary

− all interactions with the system defined by the oracles

− specification of adversary’s power

• typical oracles:

− Reveal: reveal ephemeral key

− Reveal: reveal session key

− Corrupt: reveal long-time key

− Execute(A,B): make A and B execute the protocol

− Send: send a message to A and get its reaction (if any) – the messages may come
form the protocol, but might be faulty

− Test: a session ends after key establishment, no workload communication (this can
be added with the tested key), must concern a fresh session

− fresh session: exclude situation where for instance via corruptions it is possible to
break the session

• AKE for KEA+:

− reduction via Gap Diffie-Hellman (CDH under assumption that DDH easy)

− ROM for hash function

− ways to distinguish between the random from real key: hash value must be asked

− possibilities for the real key K to appear in the experiment:

1. Forging: enforce Hash on the tuple (CDH(A, Y),CDH(B,X), A,B)

2. Key-replication attack. succeed to create another session with the same “sig-
nature” (CDH(A, Y),CDH(B,X), A,B) and so the same secret key

− key replication: impossible, since A′ = A and CDH(A′, Y ′) = CDH(A, Y) implies
Y = Y ′ . Similarly X =X ′ and the sessions are identical

− forging: case of a single session:

− adversary observes a single session between honest A and B

− problem GDH for (X0, Y0)

29

− the long termkey of A chosen as X0, the response of B chosen as Y0, the rest
executed as in the scheme description

− learning the key requires asking hash oracle about (CDH(X0, Y0), g
b·x, A,B)

− forging the in general case: problem since A involved in many interactions but we
do not know the secret key. Idea: replace with a random key

− all users initialized according to the scheme, except for A

− Hash simulated by HSim

− sessions not involving A executed according to the protocol (and HSim)

− a session (A,C , role) :

− C public key of C

− if A initiator, then it chooses x at random, sends gx, gets reply Y ,
session key HSpec(1, Y , Cx, A, C)

− ifA responder, then it waits for X , chooses y at random, sends gy, gets
reply Y , session key HSpec(2, X ,Cy, C ,A)

− a session (C,A, role) :

− as in the scheme description

− except for test session where Y0 sent and the session key not computed

− reveal and corrupt key: as described by the scheme

− HSim(Z1, Z2, B, C) – random oracle on valid signatures

− if asked before, then repeat the answer

− check all previous HSpec(i, Y , Z , B, C) = v and check if Z = Z3−i and
DDH(X0, Y , Zi)= true. If yes, then return v.

− if not found then return random w and remember it

− HSpec(i, Y , Z, B, C) - random oracle for cases when adversary does not know the
secret key of A. For input (Z1, Z2, B, C), where Zi=CDH(X0, Y) and Z3−i=Z

——–

VIII. HARDWARE TROJANS

methods of testing:

− functional tests

30

− internal tests circuitry

− optical inspection (distructive) - can detect modifications on layout level

Idea: change properties that are not visible under microscope: increase aging effects, manipulate
transistors so that the output is fixed

Dopant Trojans

CMOS inverter: (image Wikipedia)

Figure 1.

where: A is the source, Vdd positive supply , Vss is ground

upper transistor: PMOS (allows current flow at low voltage)

lower transistor: NMOS (allows current flow at high voltage)

how it works:

− if voltage is low then the lower transistor is in high resistance state and the current from Q
flows to Vdd (high voltge)

− if voltage is high then the upper transistor is in high resistance state and the current from
Q flows to Vss while Vdd has low voltage

PMOS: in dopant area “holes” (positive) playing the role of conductor, low voltage creates depletion
area, high voltage attracts them

NMOS: in dopant area electrons (negative) playing the role of conductor, high voltage pushes the
electrons out

CMOS inverter in the “bird eye perspective”:

Trojan design:

31

− whatever happens the VDD is connected to the output

Trojan TRNG

TRNG cosnsists of

− entropy source (physical)

− self test circuit (OHT - online health test)

− deterministic RNG, Intel version:

− conditioner (computes seeds to rate matcher) and rate matcher (computes 128 bit
numbers)

− derivation, internal state (K, c):

1. c8 c+1, r8 AESK(c)

2. c8 c+1, x8 AESK(c)

3. c8 c+1, y8 AESK(c)

4. K8 K ⊕x

5. c8 c⊕ y

− attack: fix K by applying Trojan transistors, if K is known, then it is easy to find internal
state c from r and then the consecutive random numbers r

− problem with OHT: tests with some values have to create known outputs (32 CRC from
the last 4 outputs), knowing the test one can find K by exaustive search

Side channel Trojan:

− side channel resistant logic: Masked Dual Rail Logic

i. for each a both a and negation of a computed

ii. precharge: each phase preceded by charging all gates

iii. masking operations by random numbers:

computing a∧ b :

− input a⊕m, a⊕¬m, b⊕m, b⊕¬m, m, ¬m

32

− detection, SR-latch stage and majority gate

attacking not-majority gate:

Idea: instead of cutting output a low voltage

− the same behavior except for A = 0 and B, C = 1, where good output but high power
consumption due to connection between VDD and VSS

Defense methods:

− problem: Trojan may be triggered by some particular event, detection becomes harder

− problem: Trojan may work in very particular physical conditions, e.g. temperature, voltage

− on-chip checks: detection of unexpected behavior, e.g. delay characteristics: workload path
and a shadow path that provides result after fixed time, + comparison

− methods to enable activation in certain areas only

− inserting PUFs, (either randomize as much a s possible - noise over trojan information) or
keep deterministic

XI. COMMUNICATION SECURITY – SSL/TLS

Padding attack (Serge Vaudenay)

Scenario:

− for encryption the plaintext should have the length as a multiply of b

− always pad something

33

− if i positions have to be padded, then writes i’s there. de-padding is then easy.

− encrypt the resulting padded plaintext x1,
 ,xN in CBC mode with IV (fixed or random)
and a block cipher Enc:

y1=Enc(IV⊕ x1), yi=Enc(yi−1⊕xi)

− properties of CBC:

− efficiency

− confidentiality limits: if IV fixed one can check that two plaintexts have the same
prefix of a given size

attack:

− manipulate the ciphertext

− destination node decrypts, it can detect incorrect padding

− decision: what to do if the padding is incorrect? Each reaction is wrong:

→ reject: creates padding oracle (attacker tests the behavior)

→ proceed: enables manipulation of the plaintext data

last word oracle:

− goal: compute Dec(y) for a block y

− create an input for padding oracle:

− create a 2 block ciphertext: r= r1
 rb chosen at random, c8 r |y

− oracle call: if Oracle(c)=valid, then Dec(y)⊗ r should yield a correct padding. whp
this happens if yb= rb⊕ 1

− it may happen that the oracle says valid because of other correct padding. The
following problem solves the problem (idea: change consequtive words in the padding
until invalid:

1. pick r1 , r2
 , rb at random, take i=0

2. put r= r1r2
 rb−1(rb⊕ i)

3. run padding oracle on r |y, if the result “invalid” then increment i and goto (2)

4. rb8 rb⊕ i

5. for j= b to 2:

r8 r1
 rb−j(rb−j+1⊕ 1)rb−j
 rb

ask padding oracle for r |y, if “invalid” then output (rb−j+1⊕ j)
 (rb⊕ j) and
halt

6. output rb⊕ 1

34

block decryption oracle

let a1
 ab be the plaintext of y

decryption:

− get ab via the last word oracle

− proceed step by step learning aj−1 once aj ,
 , ab are already known

1. set rk8 ak⊕ (b− j +2) for k= j ,
 , b /* preparing the values so that the padding
values (b− j+2) appear at the end)

2. set r1,
 , rj−1 at random, i8 0 /* search for the value that makes a proper padding

3. r8 r1
 rj−2(rj−1⊕ i)rj
 rb

4. if O(r |y) = invalid, then i8 i+1 and goto 3

5. output rj−1⊕ i⊕ (b− j+2)

decryption oracle

− block by block

− the only problem with the first block if IV is secret

bomb oracles:

− padding oracle in SSL/TLS breaks the connection if a padding error occurs , so can be used
only once

− bomb oracle: try a longer part at once

other paddings:

− 00
 .0n instead of nn
 .n – also vulnerable

− 12
 .n instead of nn
 .n – also vulnerable

Applications for (old) versions of SSL/TLS, ...

− MAC applied before padding, so padding oracle techniques can be applied

− wrong MAC and wrong padding create the same error message - from SSL v3.0, debatable
whether it is impossible to recognize situation via side channel (response time)

− TLS attempts to hide the plaintext length by variable padding

− checking the length of padding: take the last block y, send r |y where the last word of r is
n⊕ 1. acceptance means that the padding is of length n

− checking paddings longer than a block: send ry1y2 where y1y2 are the last blocks

35

− IPSEC: discards message with a wrong padding, no error message, other activities to process
errors (they may leak information)

− WTLS: decryption-failed message in clear (!) session not interrupted

− SSH: MAC after padding (+)

———————————————————

Lucky Thirteen

− concerns DTLS (similar to TLS for UDP connections)

− MAC-Encode-Encrypt paradigm (MEE), MAC is HMAC based

−

− 8-byte SQN, 5-byte HDR (2 byte version field, 1 byte type field, 2 byte length field)

− size of the MAC: 16 bytes (HMAC-MD5), 20 bytes (HMAC-SHA1), 32 bytes (HMAC-SHA-
256)

− padding: p+1 copies of p, at least one byte must be added

− after receiving: checking the details: padding, MAC, (underflow possible if padding manip-
ulated and removing blindly)

− HMAC of M :

T : =H((Ka⊕ opad)||H((Ka⊕ ipad)||M))

− Distinguishing attack:

→ M0 : 32 arbitrary bytes followed by 256 copies of 0xFF

→ M1: 287 bytes followed by 0x00

→ both 288 bytes, 18 plaintext blocks

→ encoded Md||T ||pad, we aim to guess d

→ C− the ciphertext

→ create a ciphertext C ′ by truncating all parts corresponding to T ||pad

→ give HDR||C ′ for decryption

36

→ if M0: the 256 copies of 0xFF interpreted as padding and removed, remaining 32
bytes as short message and MAC, calculating MAC: 4 hash computed, then typically
error returned to the attacker

→ if M1: 8 hash evaluations

Plaintext recovery attacks

− C∗ – the block of ciphertext to be broken, C ′ – the ciphertext block preceding it

− we look for P ∗, where P ∗=Dec(C∗)⊕C ′

− assume CBC with known IV, b= 16 (as for AES). t= 20 (as for HMAC-SHA-1)

− let ∆ be a block of 16 bytes, consider

Catt(∆)=HDR||C0||C1||C2||C ′⊕∆||C∗

it represents 4 non-IV blocks in the plaintext, the last block is:

P4=Dec(C∗)⊕ (C ′⊕∆)=P ∗⊕∆

− case 1: P4 ends with 0x00 byte:

− 1 byte of padding is removed, the next 20 bytes interpreted as MAC, 43 bytes left -
say R. MAC computed on SQN|HDR|R of 56 bytes

− case 2: P4 ends with padding pattern of ≥2 bytes:

− at least 2 bytes of padding removed, 20 bytes interpreted as MAC, at most 42 bytes
left, MAC over at most 42+13=55 bytes

− case 3: P4 ends with no valid padding:

− according to RFC of TLS 1.1, 1.2 treated as with no padding , 20 bytes treated as
MAC, verification of MAC over 44+13=57 bytes

– MAC is computed to avoid other timing attack!

− time: case 1 and 3: 5 evaluations of SHA-1, case 2: 4 evaluations of SHA-1, detection of
case 2 possible in LAN

− in case 2: most probable is the padding 0x01 0x01, all other paddings have probability
about ≈ 1

256
of probability of 0x01 0x01, so we may assume that P4=P ∗⊕∆ ends with 0x01

0x01. Then we derive the last two bytes of P ∗.

repeat the attack with ∆′ that has the same last two bytes to check if the padding has the
length bigger than 2.

− after recovery of the last two bytes the rest recovered byte by byte from right to left:

− the original padding attack

− e.g. to find 3rd rightmost byte set the last two bytes ∆ so that P4 ends with 0x02
0x02, then try different values for the ∆13 so that Case 2 occurs (meaning that P4

ends with 3 bytes 0x02

− average time: 14 · 27 trials

37

− practical issues:

→ for TLS after each trial connection broken, so multi-session scenario

→ timing difference small, so necessary to gather statistical data

→ complexity in fact lower, since the plaintexts not from full domain: e.g. http username
and password are encoded Base64

→ partial knowledge may speed up the recovery of the last 2 bytes

→ less efficient configuration of the lengths for HMAC-MD5 and HMAC-SHA-256

———————————————

BEAST

attack, phase 0:

1. P to be recovered (e.g. a password, cookie, etc), requires ability to force Alice to put secret
bits on certain positions

2. force Alice to send 0
 0P0 (requires malware on Alice computer) – of course encrypted

3. eavesdrop and get Cp=Enc(Cp−1⊕ 0
 0P0)

4. guess a byte g

5. force Alice to send the plaintext Ci−1⊕Cp−1⊕ 0
 0g

6. Alice sends Ci=Enc(Ci−1⊕Ci−1⊕Cp−1⊕ 0
 0g)=Enc(Cp−1⊕ 0
 0g)

7. if Ci=Cp then P0= g

attack phase 1:

1. P0 already known

2. force Alice to send 0
 0P0P1 and proceed as in phase 0

last phase: we get the test for the whole P0
P15

protection: browser must be carefully designed and do not admit injecting plaintexts (SOP- Same
Origin Protection). Some products do not implement it.

———————————————

CRIME (2012)

− based on compression algorithm used by some (more advanced) versions of TLS

− compression: LZ77 and then Huffman encoding, LZ77- sliding window approach: instead of
a string put a reference to a previous occurence of the same substring

− idea of recovering cookie:

38

modified POST:

LZ77 compresses the 2nd occurence of secretcookie= or secretcookie=0. We try all

secretcookie=i to find out the case when compression is easier (secretcookie=7)

when the first character recovered the attacker repeats the attack for the second character
(trying all “secretcookie=7i” in the preamble)

TIME

• again based on compression but now on the server side (from the client to the server
compression might be disabled and CRIME fails)

• works if the server includes the client’s request in the response (most do!)

• works even if SOP is enabled. SOP does not control data with the tag img, so the attacker
can manipulate length

• the attacker requires malicious Javascript on the client’s browser

• the attacker tries to get the secret value sent from the server to the client

• mechanism:

→ as in CRIME, the request sends “secretvalue=x” where x varies

→ the response is compressed, so it takes either “secretvalue=” or “secretvalue=x”

→ the length manipulated so that either two or one packets – connection specific data
must be used: Maximum Transmission Unit

→ RTT (round trip time) measured

• independent on the browser, it is not an implementation attack!

• countermeasure: restrict displaying images

BREACH

39

Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext

• attack against HTTP compression and not TLS compression as in case of CRIME

• a victim visits attacker-controlled website (phishing etc).

• force victim’s computer to send multiple requests to the target website.

• check sizes of responses

• requirements: application supports http compression, user’s input in the response, sensitive
data in the response

• countermeasures:

→ disabling compression

→ hiding length

→ no secrets in the same response as the user’s data

→ masking secret: instead of S send R ||S ⊕R for random R (fresh in each response)

→ trace behaviour of requests and warn the user

POODLE (2014)

in SSL v.3.0 using technique from BEAST:

− encrypted POST request:

POST /path Cookie: name=value... 〈r\n\r\n〉 body ||20-byte MAC||padding

− manipulations such that:

− the padding fills the entire block (encrypted to Cn)

− the last unknown byte of the cookie appears as the last byte in an earlier block
encrypted into Ci

− attack: replace Cn by Ci and forward to the server

usually reject

accept if DecK(Ci)[15]⊕Cn−1[15] = 15, thereby Pi[15] = 15⊕Cn−1[15]⊕Ci−1[15]

proceed in this way byte by byte

− downgrade dance: provoke lower level of protection by creating errors say in TLS 1.0, and
create connection with SSL v3.0

40

− the attack does not work with weak (!) RC4 because of no padding

Weaknesses of RC4

• known weaknesses:

→ the first 257 bytes of encryption strongly biased, ≈200 bytes can be recovered if
≈232 encryptions of the same plaintext available

simply gather statistics as in case of Ceasar cipher

→ at some positions (multiplies of 256) if a zero occurs then the next position more
likely to contain a zero

• broadcast attack: force the user to encrypt the same secret repeatedly and close to the
beginning

• countermeasure: no secrets in the initial part!

TLS 1.2

differences with TLS 1.1 and TLS 1.0 (Edukacja runs with TLS 1.0):

• explicit IV instead of implicit IV

• IDEA and DES 64bit removed

• MD5/SHA-1 PRF 65 is replaced with a suite specified hash function – SHA-256 for all
TLS 1.2 suites, but in the future also SHA-3,
 .

• digitally-signed element includes the hash algorithm used

• Verify_data length is no longer fixed length ⇒TLS 1.2 can define SHA-256 based cipher
suites

• new encryption modes allowed: CCM, GCM

TLS 1.3 (draft)

many old algorithms removed (RC4,...)

———————————————–

CCM encryption mode

Prerequisites: block cipher algorithm; key K; counter generation function; formatting function;
MAC length Tlen

Input: nonce N ; payload P of Plen bits; valid associated data A

Computation: Steps:

1. formatting applied to (N,A, P), result: blocks B0,
 , Br

2. Y08 EncK(B0)

3. for i=1 to r: Yi8 EncK(Bi⊕ Yi−1)

41

4. T 8 MSBTlen(Yr)

5. generate the counter blocks Ctr0,Ctr1,
 ,Ctrm for m=Plen/128

6. for j=0 to m: Sj8 EncK(Ctrj)

7. S8 S1||
 ||Sm

8. C8 (P ⊕MSBPlen(S))|| (T ⊕S0)

Decryption:

1. return INVALID, if Clen<Tlen

2. generate the counter blocks Ctr0,Ctr1,
 ,Ctrm for m=Plen/128

3. for j=0 to m: Sj8 EncK(Ctrj)

4. S8 S1||
 ||Sm

5. P : =MSBClen(C)⊕MSBPlen(S)

6. T 8 LSBTlen(C)⊕MSBTlen(S0)

7. If N , A or P invalid, then return INVALID, else reconstruct B0,
 , Br

8. recompute Y0,
 , Yr

9. if T � MSBTlen(Yr), then return INVALID, else return P .

———————————————

GCM (The Galois/Counter Mode)

Computation: Steps:

1. H : =EncK(0128)

2. Y0: =IV||0311 if length of IV should be 96

or Y0: =GHASH(H, {}, IV)
3. Yi: =incr(Yi−1) for i=1,
 , n (counter computation)

4. Ci8 Pi⊕EncK(Yi) for i=1,
 , n− 1 (counter based encryption)

5. Cn
∗
8 Pn⊕MSBu(EncK(Yn)) (the last block need not to be full)

6. T 8 MSBt(GHASH(H,A,C))⊕EncK(Y0)

Details of computation of the tag

42

GHASH(H,A,C)=Xm+n+1 where m is the length of authenticating information A, and:

Xi equals:

0 for i=0

(Xi−1⊕Ai) ·H for i=1,
 ,m− 1

((Xi−1⊕ (Am
∗ ||0128−v)) ·H for i=m

(Xi−1⊕Ci) ·H for i=m+1,
 ,m+n− 1

((Xm+n−1⊕ (Cm
∗ ||0128−u)) ·H for i=m+n

((Xm+n⊕ (len(A)|len(C))) ·H for i=m+n+1

Decryption:

1. H : =EncK(0128)

2. Y0: =IV||0311 if length of IV should be 96

or Y0: =GHASH(H, {}, IV)
3. T ′

8 MSBt(GHASH(H,A,C))⊕EncK(Y0) , is T =T ′?

4. Yi: =incr(Yi−1) for i=1,
 , n

5. Pi8 Ci⊕EncK(Yi) for i=1,
 , n

6. Pn
∗
8 Cn

∗⊕MSBu(EncK(Yn))

XII. CERTIFICATES and – SSL/TLS

“Certified Lies”

− rogue certificates + MitM attack: the user believes that is directed elsewhere

− no control over root CA’s worldwide, indicated either by operating system or the browser

− compelled assistance from CA’s ?

———————————————

ROGUE Certificates and MD5

• target: create a certificate (webserver, client) that has not been issued by CA

• not forging a signature contained in the certificate but:

i. find two messages that Hash(M0) = Hash(M1) and M0 as well as M1 have some
common prefix that you expect in a certificate (e.g. the CA name)

ii. submit a request corresponding to M0, get a certificate with the signature over
Hash(M0)

iii. copy the signature from the certificate concerning M0 to a certificate based on M1

• problems: some data in M0 are to be guessed : sequential number, validity period,

43

some other are known in advance: distinguished name, ...

legitimate website rogue CA
certificate certificate
serial number serial number
issuing CA issuing CA
validity period validity period
domain name chosen prefixes rogue CA name

1024 bit RSA public key
extensions
“CA=true”

................................. tumor
2048 RSA public key collision bits

.................................

extension “CA=false” identical suffix

Table.

• finding M0 and M1 has to be fast (otherwise the guess about the serial number and validity
will fail) - e.g. a day over the weekend

• attack on MD5, general picture:

message A

prefix P

padding Sr

birthday blocks Sb

near-collision block Sc,1

near-collision block Sc,2

near-collision block Sc,r

suffix

←collision→

message B

prefix P ′

padding Sr
′

birthday blocks Sb
′

near-collision block Sc,1
′

near-collision block Sc,2
′

near-collision block Sc,r
′

suffix

Table.

• identical prefix, birthday bits, near collision blocks:

• birthday bits: 96, end at the block boundary, they are RSA bits – in the genuine
certificate, “tumor” (ignored part by almost all software- marked as a comment exten-
sion) – in the rogue certificate

birthday bits make the difference of intermediate hash values computed for both
certificates fall into a good class

• then apply 3 near-collision blocks of 512-bits. website: we have “consumed” 208 + 96
+ 3·512 = 1840 bits of the RSA modulus. Rogue certificate: all bits concerned are
in the “tumor”

• after collision bits: 2048-1840 = 208 bits needed to complete the RSA modulus of the
webpage – we have to generate an RSA number with the prefix of 1840 bits already
fixed

– continued so that two prime factors:

→ B denotes the fixed 1840-bit part of the RSA modulus followed by 208 ones

44

→ select at random 224-bit integer q until Bmod q<2208, continue until both q

and p= ⌊B/q⌋ are prime. Then

− p · q is an RSA number

− p · q<B, , B− p · q=B− q · ⌊B/q⌋<2208. Hence p · q has the same 1840
most significant bits as B

→ this RSA number is not secure, but still factorizing it is not feasible and cannot
be checked by CA before signing (as the smallest factor is more than 67-digit
prime)

→ ... one can create RSA signature for the webpage for the certificate request

• attack complexity (number of hash block evaluations) for a chosen prefix MD5: 249 at 2007,
239 in 2009, not much motivation for more work - remove MD5 certificates! (For a collision:
216)

for SHA-1 still 277 in 2012 (for a collision: 265)

• history:

→ attack found

→ real collision computed as a proof-of-concept

→ CA informed and given time

→ publication

→ code available

———————————————

FLAME

• malware discovered 2012, 20MB, sophisticated code, mainly in Middle East, government
servers attacked

• draft of the attack:

− client attempts to resolve a computer name on the network, in particular make
WPAD (Web Proxy Auto-Discovery Protocol) requests

− Flame claims to be WPAD server, provides wpad.dat configuration file

− victim that gets wpad.dat sets its proxy server to a Flame computer (later no sniffing
necessary!)

− Windows updates provided by the Flame computer. The main problem is that the
updates must be properly signed!

− signatures obtained for terminal Services, certificates issued by Microsoft LSRA PA.
No Extended Key Usage restrictions – allows code signing, (except for Microsoft
Hydra X.509 extension – this cannot be used for code-signing on Vista and Windows
7)

45

− till 2012 still signatures with MD5 hash used

− MD5 collision necessary to remove extension

MD5 attack draft

MD5:

• padding to the length 448 mod 512 with 10..., then the length of the message as a 64 bit
number

• partition into 512 bit blocks

• IHVi is the intermediate hash value after block i, consist of four 32-bit numbers ai, bi, ci,
di. the initial values a0, b0, c0, d0 are fixed

• IHVi=MD5Compress(IHVi−1,Mi)

• output IHVN (after some reformatting)

• MD5Compress compression function:

− steps 0,...,63 (4 rounds consisting of 16 steps)

− each step involves modular addition, left rotation, nonlinear function ft, involves
addition constant ACt and rotation constant RCt

− nonlinear function: ft(x, y, z)=

F (x, y, z)= (x∧ y)⊕ (x̄ ∧ z) for 0<t< 16

G(x, y, z)= (z ∧x)⊕ (z̄ ∧ y) for 16≤ t < 32

H(x, y, z)= x⊕ y⊕ z for 32≤ t<48

I(x, y, z)= y⊕ (x∨ z̄) for 48≤ t < 64

− the message block is used as strings Wt , the same message parts occurs many times
on many places – this makes adjusting for a collision significantly more complicated

46

Wt equals:

mt for 0≤ t < 16

m(1+5t)mod 16 for 16≤ t < 32

m(5+3t)mod 16 for 32≤ t < 48

m(7t)mod 16 for 48≤ t < 64

that is, we get the following indices for m:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

1,6,11,0, 5,10,15,4, 9,13,2,7, 12,1,6,11

5,8,11,14, 1,4,7,10, 13,0,3,6, 9,12,15,2

0,7,14,5, 12,3,10,1, 8,15,6,13, 4,11,2,9

− differential analysis: two inputs with defined differences that attempt to cancel the
differences in the intermediate hash values

− if all ∆mt=0 except for m11, then we may attempt to

i. reduce the differences to 0 before second m11

ii. cancel out the effect of the second m11 by the third m11

iii. create a limited number of differences at places we want thanks to the lastm11

cancel out the effect of m11 in the middle

− rolling notation: the values kept are Qt, Qt−1, Qt−2, Qt−3 , computed Qt+1 and
retained Qt+1, Qt, Qt−1, Qt−2 . Computation:

Ft = ft(Qt, Qt−1, Qt−2),

Tt = Ft+Qt−3+ACt+Wt

Rt = RL(Tt,RCt)

Qt+1 = Qt+Rt

− final step: (quite important! enables elimination of differences step by step)

MD5Compress(IHV, B)= (a+Q61, b+Q64, c+Q63, d+Q62)

Notation:

− variables marked with a prime used for the second copy

− δX=X −X ′

− ∆X is δX in BSDR notation (binary signed digit representation): a 32-bit word Z

is defined as (ki)i=0
31 , where

Z =
∑

i=1
31 2i · ki, and i∈ {−1, 0, 1}

− many such representations for a given number, take the one with the maximal number
of zeroes

47

− one can enforce that there are no two nonzero values on the neighboring positions

Goal

• given two arbitrary prefixes P and P ′ find S and S ′ so that Hash(P ||S) =
Hash(P ′||S ′)

• strategy: extend via padding so that both P and P ′ become the same length, apply
birthday part to create differences of intermediate hashes of a good form, apply near-
collision blocks to reduce the differences

Birthday part

• constructed near-collision blocks (based on Xiaoyun Wang observation): unfortu-
nately they cannot erase a difference in a, only identical differences can be removed
from the parts c and d

• assumption: before using near-collision blocks we adjust the intermediate hashes so
that the differences are

δIHVn=(0, δb, δc, δc)

• birthday search: we aim to have a property on 64 bits, as demand δa = 0 and
δ(c− d) = 0

• average number of calls to MD5 compression function ≈ π
√

232

• technique used: random walk and Floyd’s method. storing only characteristic points
on a walk

• the pseudorandom function used for the walk: depends only on the bits that are taken
to determine the pseudocollision

• in the original paper: more conditions (relationship between δb and δc) - time-space
trade-off – so that the time for the birthday part and near collision part are of the
same order

• a collision found in this way is not always useful as the prefix might be the same,
number of pairs of near-collision blocks must be small, etc

Near-collision blocks

• basic differential path for a near-collision block (it is not the full differential path but a
builing block):

48

• overview:

− only δm11not equal to 0. It occurs only at steps 34 (to erase a difference δQ31), and
at step 61, where it has to generate some differences in a controlled way

− then the difference propagates to Q62, Q63 (affecting the change on c and d) as well
as Q64 (affecting b), difference obtained

±
(

0, 2p+
∑

λ=0

w ′

sλ · 2p+21+λmod 32, 2p, 2p

)

− different characteristics for different w ′ - for large w ′ more differences might be
removed but also probability gets lower

• starting differences: δc=
∑

i
ki · 2i and δb− δc=

∑

i
li · 2i (expressed as NAFs)

• let ki� 0: use differential path with m11= ki · 2i−10mod 32 to eliminate the difference ki · 2i
in c and d. A side effect: change of δb by

ki2
i+

∑

λ=i+21

i+21+w ′

lλ · 2λmod 32

in this expression we carefully choose w ′ to get appropriate parameters lλ

• finally δc=0, but there are some differences in b, say we get δb̂=
∑

λ=0
31

eλlλ2
λ, where eλ=0

(if the coordinate has been nullified) or eλ=1, the weight of δb̂ might be higher than the
weight of δb

• the differences from δb eliminated as follows:

− let NAF
(

δb̂
)

=
∑

λ=0
31

l̂
λ
· 2λ. Choose j such that l̂ j ∈{−1, 1} and j − 21mod 32 is

minimal

− Then the difference
∑

i=j

j+w ′

l̂ i2
i with w ′ = min (w, 31 − (j − 12 mod 32)) can be

eliminated from δb̂ with m11=2j−31mod 32

− side effect: a new difference 2j−21mod 32 in b, c and d

− the side effect eliminated using δm11=231 mod 32

− result: a new difference vector (0, δb̄ , 0, 0)with weight of NAF(δb̄) smaller than the
weight of NAF(δb)

• construction of near-collision blocks:

− the key is so-called differential path for MD5Compress, for IHV, IHV’ and δb

− δFt= ft(Qt
′, Qt−1

′ , Qt−2
′)-ft(Qt, Qt−1, Qt−2)

δTt= δFt+ δQt−3+ δWt

δRt=RL(Tt
′,RCt)−RL(Tt,RCt)

δQt+1= δQt+ δRt

49

− δF cannot be uniquely determined given (δQt, δQt−1, δQt−2)

− differentials: corresponding to each step in the rolling notation. We start from

IHV =(Q−3, Q0,Q−1, Q−2) and IHV’ =(Q−3
′ , Q0,

′ Q−1
′ , Q−2

′) and δB

and leading to (δQ61, δQ62, δQ63, δQ64)

− bitconditions (from the original paper):

− constructing differential paths:

i. for steps 1-11: forward

ii. for steps 64-16 backwards

iii. then try to fill the gap between 11 and 16

− very subtle case specific techniques

XIII. CACHE ATTACKS

idea:

• applies to multiprocess architectures, with strict separation between processes offered by
the system: hypervisor and virtualization, sandboxing, ...

• trying to get secrets from one processes by another process with no priviledges

• despite separation protection the processes share cache

• there is a strict control over the cache content but cache hits and cache misses might
be detected by timing for the attacker’s process (and not of the victim process)

• the timing for cache access should somehow depend on the sensitive information to be
retreived

• difficulty: other than in the classical cryptanalysis – access to plaintext or ciphertext might
be impossible (they belong to the victim process) - the attacker can only predict something

50

cache:

− cache is necessary: gap between CPU speed and latency of memory access, innermost cache
access ≈0.3ns, main memory access ≈50ns to 150ns

− set-associative memory cache:

− cache line of B bytes

− S cache sets, each consisting of W cache lines

− when a cache miss occurs, then a memory block is copied into one of cache lines
evicting its previous contents

− a memory block with address a can be cached only into the cache set with the index
i such that i= ⌊a/B⌋ — this is crucial for the attack

− cache levels: slight complication to the attacks but differences of timing enable to recognize
the situation

———————————————

CASE STUDY: AES encryption

AES software implementation:

• particularly vulnerable because of its design

• AES defined in algebraic terms, but lookup table is typically faster

• key expansion: round zero: simply the key bytes directly, other rounds: key expansion
reversable (details irrelevant for the attack)

• fast implementation based on tables T0, T1, T2, T3 and T0
(10)

, T1
(10)

, T2
(10)

, T3
(10) for the last

round (with no MixColumns)

• round operation
(

x0
(r+1)

, x1
(r+1)

, x2
(r+1)

, x3
(r+1)

)

8 T0(x0
r)⊕T1(x5

r)⊕T2(x10
r)⊕T3(x15

r)⊕K0
(r+1)

(

x4
(r+1)

, x5
(r+1)

, x6
(r+1)

, x7
(r+1)

)

8 T0(x4
r)⊕T1(x9

r)⊕T2(x14
r)⊕T3(x3

r)⊕K1
(r+1)

(

x8
(r+1)

, x9
(r+1)

, x10

(r+1)
, x11

(r+1)
)

8 T0(x8
r)⊕T1(x13

r)⊕T2(x2
r)⊕T3(x7

r)⊕K2
(r+1)

(

x12

(r+1)
, x13

(r+1)
, x14

(r+1)
, x15

(r+1)
)

8 T0(x12
r)⊕T1(x1

r)⊕T2(x6
r)⊕T3(x11

r)⊕K3
(r+1)

attack notation:

− δ=B/entrysize of lookup table, typically: entrysize=4bytes, δ=16, (so δ entries of a lookup
table are within the same cache line)

− for a byte y let 〈y〉= ⌊y/δ⌋, it indicates a memory block of y in Tl

− if 〈y〉= 〈z〉 then x and y correspond to requests to the same memory block of the lookup
table

51

− Qk(p, l, y)=1 iff AES encryption of plaintext p under key K accesses memory block of index
y in Tl at least once in 10 rounds

− Mk(p, l, y) a measurement that has expected value bigger in case when Qk(p, l, y)=1 then
in case when Qk(p, l, y)= 0

“synchronous attack”

− plaintext random but known, one can trigger encryption (e.g. for VPN with unknown key,
dm-crypt of Linux)

− phase 1: measurements, phase 2: analysis

− from experiments: AES key recovered using 65 ms of measurements (800 writes) and 3 sec
analysis

− round-one attack: the first round attacked

i. accessed indices are simply xi
(0)

= pi⊕ ki for i=0,
 , 15

ii. finding information 〈ki〉 of ki – test candidates kī

iii. if 〈ki〉= 〈kī 〉 and 〈y〉= 〈pi⊕ kī 〉, then Qk(p, l, y)= 1 for the lookup Tl

(

xi
(0)
)

iv. if 〈ki〉� 〈kī 〉, then there is no lookup in block y for Tl during the first round, but

− there are 4 · 9− 1 = 35 other accesses affected by other plaintext bits during
the entire encryption (4 per round, 9 rounds in total as the last round uses
different look-up tables)

− probability that none of them accesses block y for Tl is
(

1− δ

256

)

35≈ 0.104 for δ= 16

v. few dozens of samples required to find a right candidate for 〈kī 〉

vi. together we determine log (256/δ)= 4 bits of each byte of the key

vii. no more possible for the first round, not enough to start brute force (still 64 bits to
be found!)

viii. in reality more samples needed due to noise in measurements Mk(p, l, y) and not
Qk(p, l, y)

− two-round attack: the second round attack because of the missing bits

i. exploiting equations derived from Rijndeal specification:

x2
(1)

= s(p0⊕ k0)⊕ s(p5⊕ k5)⊕ 2•s(p10⊕ k10)⊕ 3•s(p15⊕ k15)⊕ s(k15)⊕ k2

x5
(1)

= s(p4⊕ k4)⊕ 2•s(p9⊕ k9)⊕ 3•s(p14⊕ k14)⊕ s(p3⊕ k3)⊕ s(k14)⊕ k1⊕ k5

x8
(1)

=
 .

x15
(1)

=
 .

where s stands for the Rijndael Sbox, and • means multiplication in the field with
256 elements

52

ii. lookup for T2

(

x2
(1)
)

:

− 〈k0〉, 〈k5〉, 〈k10〉, 〈k15〉, 〈k2〉 already known

− low level bits of 〈k2〉 influence only low bits of x2
(1) so not important for cache

access pattern

− the upper bits of x2
(1) can be determined after guessing low bits of k0, k5, k10,

k15: there are δ4 possibilities (=164)

− a correct guess yields a lookup in the right place

− an incorrect guess: some ki� kī so

x2
(1)⊕ x̄2

(1)= c•s(pi⊕ ki)⊕ c•s(pi⊕ k̄i)⊕

(for c depending on i) where ... depends on different random plaintext bits
and therefore random

differential properties of AES studied for AES competition:

Pr [c•s(pi⊕ ki)⊕ c•s(pi⊕ k̄i)� z]> 1−
(

1− δ

256

)

3

so the false positive for lookup:

−
(

1− δ

256

)

3
for computing T2

(

x2
(1)
)

−
(

1− δ

256

)

for computing each of the remaining T2

− together
(

1− δ

256

)

38

− this yields about 2056 samples necessary to eliminate all wrong candidates

− it has to repeated 3 more times to get other nibbles of key bytes

iii. optimization: guess ∆= ki⊕kj and take pi⊕ pj=∆, then i.e. s(p0⊕k0)⊕ s(p5⊕ k5)
cancels out and we have to guess less bits (4 instead of 8)

− similar attack: last round - created ciphertext must be known to the attacker, otherwise
similar. Subkey from the last round learnt, but keyschedule is reversable

− measurement: Evict+Time

i. procedure:

1. trigger encryption of p

2. evict: access memory addresses so that one cache set overwritten completely

3. trigger encryption of p

ii. in the evicted cache set one cache line from Tl

iii. measure time: if long, then cache miss and the encryption refers to evicted δ positions
from the lookup table

53

iv. practical problem: triggering may invoke other activities and timing is not precise

− measurement: Prime+Probe

i. procedure

1. (prime) read A: a contiguous memory of the size of the cache – results in
overwriting the entire cache

2. trigger an encryption of p (partial eviction at places where lookup used)

3. (probe:) read memory addresses of A that correspond to Mk(p, l, y)

ii. easier: timing for probe suffice to check if encryption used a given cache set

− complications in practice:

i. adress of lookup tables in the memory - how they are loaded to the cache remains
unknown – offset can be found by considering all offsets and then statistics for each
offset (experiments show good results even on noisy environment)

ii. hardware prefetcher may disturb the effects. Solution: read and write the addresses
of A according to a pseudorandom permutation

− practical experiments: e.g. Athlon 64, no knowledge of adresses mapping, 8000 encryp-
tions with Prime & Probe

Linux dm-crypt (disk, filesystem, file encryption): with knowledge of addressing, 800 encryp-
tions (65 ms), 3 seconds analysis, full AES key

− extensions of the attack:

− on some platforms timing shows also position of the cache line (better resolution for
one-round attack)

− remote attacks (VPN, IPSec): with requests that trigger immediate response (situa-
tion yet unclear about practicality)

“asynchronous attrack”

− no knowledge of plaintext, no knowledge of ciphertext

− one-round attack

− based on frequency F of bytes in e.g. English texts, frequency score for each of
256

δ
blocks

of length δ

− F is nonuniform: most bytes have high nibble equal to 6 (lowercase characters “a”
through “o”)

− find j such that j is particularly frequent indicates j=6⊕〈ki〉 and shows 〈ki〉

− complication: this frequency concerns at the same time k0, k5, k10, k15 affecting T0 so we
learn 4 nibbles but not their actual allocation to k0, k5, k10, k15

− the number of bits learnt is roughly: 4 · (4 · 4− log4!)≈ 4 · (16− 3.17)≈ 51 bits

54

− experiment: OpenSSL, measurements 1 minute, 45.27 bits of information on the 128-bit key
gathered

Bernstein’s attack

− an alternative way of computing AES, algorithm applied in OpenSSL:

→ two constant 256-byte tables: S and S ′

→ expanded to 1024-byte tables T0, T1, T2, T3

T0[b] = (S ′[b], S[b], S[b], S[b]⊕S ′[b])

T1[b] = (S[b]⊕S ′[b], S ′[b], S[b], S[b])

 .

→ AES works with 16-byte arrrays x and y, where x initialized with the key k, y

initialized with n⊕ k, where n is the plaintext

→ AES computation is modifications of x and y:

i. x viewed as (x0, x1, x2, x3) (4 bytes parts)

ii. e8 (S[x3(1)⊕ 1], S[x3(2)], S[x3(3)], S[x3(0)])

iii. replace (x0, x1, x2, x3)with (e⊕x0, e⊕x0⊕x1, e⊕x0⊕x1⊕x2, e⊕x1⊕x2⊕x3)

iv. modify y viewed as (y0, y1, y2, y3), replace it with

(T0[y0[0]]⊕T1[y1[1]]⊕T2[y2[2]]⊕T3[y3[3]]⊕ x0,

(T0[y1[0]]⊕T1[y2[1]]⊕T2[y3[2]]⊕T3[y0[3]]⊕ x1,

(T0[y2[0]]⊕T1[y3[1]]⊕T2[y0[2]]⊕T3[y1[3]]⊕ x2,

(T0[y3[0]]⊕T1[y0[1]]⊕T2[y1[2]]⊕T3[y2[3]]⊕ x3

v. the next round uses ⊕2 instead of ⊕1 for x, otherwise the same. similar
changes corresponding to rounds up to 9

vi. in round 10 use S[], S[], S[], S[] instead of T ′s

vii. y is the final output

− embarassing simple attack:

→ timing of execution depends on k[i]⊕n[i]:

− try many plaintexts

− collect statistics for each byte as n[i]

− the maximum occurs for z

− the maximum corresponds to a fixed value for k[i]⊕n[13], say c

− compute k[13] = c⊕ z

55

→ for different bytes different statistics observed: for some t a few values k[t] ⊕
plaintext[t], where substantially higher time observed

→ statistic gathered, different packet lengths

→ finally brute force checking all possibilites, nonce encrypted with the server key

Countermeasures

• ”no reliable and practical countermeasure” so far

• implementation based on no-lookup but algebraic algorithm (slow!!!) or bitslice implemen-
tation (sometimes possible and nearly as efficient as lookup)

• alternative lookup tables: if smaller than less date leaks (but for cryptanalysis bigger Sboxes
increase security)

• data-independent access to memory blocks - every lookup causes a redundant read in all
memory blocks, generally: oblivious computation possible theoretically but overhead makes
it inpractical

• masking operations: ≈“we are not aware of any method that helps to resist our attack”

• cache state normalization: load all lookup tables - equires deep changes in OS and reduces
efficiency, even then LRU cache policy may leak information which part has been used!

• process blocking: again, deep changes in OS

• disable cache sharing: deep degradation of performance

• ”no-fill” mode during encryption:

− preload lookup tables

− activate “no-fill”

− encrypt

− deactivate “no-fill”

the first two steps critical and no other process is allowed to run

possible only in priviledged mode, cost of operation prohibitive

• dynamic table storage: e.g. many copies of each table, or permute tables

details architecture dependent and might be costly

• hiding timing information: adding random values to timing makes the statistical analysis
harder but still feasible

• try to protect some rounds (the first 2 and the last one) with any mean – but may be there
are other attack techniques...

• cryptographic services at system level: good but unflexible

• sensitive status for user processes: erasing all data when interrupt

56

• specialized hardware support: seems to be the best choice

but the problem is not limited to AES or crypto – many sensitive data operations are not
cryptographic and a coprocessor does not help

XV. PKI STANDARDS

RFC

”Request for Comments”

• by Internet Engineering Task Force (IETF) and the Internet Society

• semi-standard, developed from rfc from ARPANET

• authors of RFC versus standards with commitees

• peer review, some reach status of “Internet Standards”

• RFC editor provided

• streams:

− Internet Engineering Task Force (IETF) - current issues

− BCP Best Current Practice;

− FYI For Your Information; informational

− STD Standard: with 2 maturity levels

− Internet Research Task Force (IRTF) - more long term issues

− Internet Architecture Board (IAB) (a body over task forces)

− independent

• Status:

− informational

− experimental

− best current practice

− standard: Proposed Standard, Draft Standard, Internet Standard

EXAMPLE: RFC2560

Network Working Group

57

Category: Standards Track

authors ... June 1999

title: X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and
requests discussion and suggestions for improvements. Please refer to the current edition of the
"Internet Official Protocol Standards" (STD 1) for the standardization state and status of this
protocol. Distribution of this memo is unlimited.

Abstract

This document specifies a protocol useful in determining the current status of a digital certificate
without requiring CRLs. Additional mechanisms addressing PKIX operational requirements are
specified in separate documents.

... contents of sections

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this doc-
ument (in uppercase, as shown) are to be interpreted as described in [RFC2119].

−
MUST=REQUIRED=SHALL: an absolute requirement

MUST NOT=SHALL NOT: an absolute prohibition of the specification

SHOULD=RECOMMENDED: ‘‘there may exist valid reasons in particular circumstances
to ignore, but implications must be understood and carefully weighed before choosing a
different course”

SHOULD NOT=NOT RECOMMENDED: negation of SHOULD (think twice before imple-
menting it in this way!)

MAY=OPTIONAL: real option, but implementation which does not include a particular
option MUST be prepared to interoperate with another implementation which does include
the option,

2. Protocol Overview

− supplement to periodical checking CRL

− enables to determine the state of an identified certificate

− more timely, with more information

− RFC defines data exchanged

2.1 Request

– protocol version – service request – target certificate identifier – optional extensions which MAY
be processed by the OCSP Responder

OCSP Responder checks:

1. request well formed

58

2. responder configured to serve such request

3. all necessary data given in the request

otherwise: error message

2.2 Response

− type+actual response

− basic type MUST be supported

− ”All definitive response messages SHALL be digitally signed.”

− signer MUST be one of: CA who issued the certificate, or a Trusted Responder of the
requester, CA Designated Responder (Authorized Responder) - agent of CA with a certifi-
cate from CA

− response message: version of the response syntax – name of the responder – responses for
each of the certificates in a request – optional extensions – signature algorithm OID –
signature computed across hash of the response

− for each target certificate: certificate status value – response validity interval – optional
extensions

− values:

− good: “At a minimum, this positive response indicates that the certificate is not
revoked, but does not necessarily mean that the certificate was ever issued or that
the time at which the response was produced is within the certificate’s validity interval.
Response extensions may be used to convey additional information on assertions
made by the responder regarding the status of the certificate such as positive state-
ment about issuance, validity, etc.”

− revoked: the certificate has been revoked (permanantly or temporarily (on hold))

− unknown: responder has no data

2.3 Exception Cases

− error messages not signed

− types: – malformedRequest – internalError – tryLater – sigRequired – unauthorized

− "internalError" = responder reached an inconsistent internal state. The query should be
retried

− "tryLater" = temporarily unable to respond

− "sigRequired”= the server requires the client sign

− "unauthorized"=the client is not authorized to make this query

2.4 Semantics of thisUpdate, nextUpdate and producedAt

− thisUpdate = time at which the indicated status is known to be correct

59

− nextUpdate= time at or before which newer information will be available about the cer-
tificate status

− producedAt = time at which the OCSP signed this response.

2.5 Response Pre-production

‘‘OCSP responders MAY pre-produce signed responses specifying the status of certificates at a
specified time. The time at which the status was known to be correct SHALL be reflected in the
thisUpdate field of the response. The time at or before which newer information will be available
is reflected in the nextUpdate field, while the time at which the response was produced will appear
in the producedAt field of the response.”

− means that OCSP is not checking the status of the certificate but status on the CRL!

2.6 OCSP Signature Authority Delegation

− the OCSP might be an agent of CA explicitely apointed,

− signing key must allow signing it

2.7 CA Key Compromise

− if CA’s private key compromised, then OCSP MAY return the revoked state for all certifi-
cates issued by that CA.

3. Functional Requirements

3.1 Certificate Content

− CAs SHALL provide the capability to include the AuthorityInfoAccess extension in certifi-
cates that can be checked using OCSP

− accessLocation for the OCSP provider may be configured locally at the OCSP client

− CAs supporting OCSP MUST “provide for the inclusion of a value for a uniformResour-
ceIndicator (URI) accessLocation and the OID value id-ad-ocsp for the accessMethod in the
AccessDescription SEQUENCE’ ’

− accessLocation field in the subject certificate defines the transport (e.g. HTTP) used to
access OCSP responder and data (e.g. a URL)

3.2 Signed Response Acceptance Requirements

Before accepting response clients SHALL confirm that:

1. certificate in response=certificate asked

2. signature valid

3. signature of the responder

4. responder authorized

5. thisUpdate sufficiently recent

6. nextUpdate is greater than the current time

60

4. Detailed Protocol

− data to be signed encoded using ASN.1 distinguished encoding rules (DER)

− ASN.1 EXPLICIT tagging as a default

− ”terms imported from elsewhere are: Extensions, CertificateSerialNumber, SubjectPublicK-
eyInfo, Name, AlgorithmIdentifier, CRLReason”

4.1 Requests

4.1.1 Request Syntax

OCSPRequest ::= SEQUENCE { tbsRequest TBSRequest, optionalSignature [0] EXPLICIT Sig-
nature OPTIONAL }

TBSRequest ::= SEQUENCE {version [0] EXPLICIT Version DEFAULT v1, requestorName [1]
EXPLICIT GeneralName OPTIONAL, requestList SEQUENCE OF Request, requestExtensions
[2] EXPLICIT Extensions OPTIONAL }

Signature ::= SEQUENCE { signatureAlgorithm AlgorithmIdentifier, signature BIT STRING,
certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL}

Version ::= INTEGER { v1(0) }

Request ::= SEQUENCE { reqCert CertID, singleRequestExtensions [0] EXPLICIT Extensions
OPTIONAL }

CertID ::= SEQUENCE { hashAlgorithm AlgorithmIdentifier, issuerNameHash OCTET
STRING, – Hash of Issuer’s DN issuerKeyHash OCTET STRING, – Hash of Issuers public key
serialNumber CertificateSerialNumber }

− public key hashed together with name (names may repeat, public key must not)

− Support for any specific extension is OPTIONAL

− ”Unrecognized extensions MUST be ignored (unless they have the critical flag set and are
not understood)”.

− requestor MAY sign the OCSP request, data included for easy verification (name:SHALL,
certificate: MAY)

4.2 Response Syntax

OCSPResponse ::= SEQUENCE { responseStatus OCSPResponseStatus, responseBytes [0]
EXPLICIT ResponseBytes OPTIONAL }

OCSPResponseStatus ::= ENUMERATED { successful (0), –Response has valid confirmations
malformedRequest (1), –Illegal confirmation request internalError (2), –Internal error in issuer
tryLater (3), –Try again later –(4) is not used sigRequired (5), –Must sign the request unauthorized
(6) –Request unauthorized }

The value for responseBytes consists of an OBJECT IDENTIFIER and a response syntax identified
by that OID encoded as an OCTET STRING.

ResponseBytes ::= SEQUENCE { responseType OBJECT IDENTIFIER, response OCTET
STRING }

For a basic OCSP responder, responseType will be id-pkix-ocsp-basic.

61

id-pkix-ocsp OBJECT IDENTIFIER ::= { id-ad-ocsp } id-pkix-ocsp-basic OBJECT IDENTI-
FIER ::= { id-pkix-ocsp 1 }

4.3 Mandatory and Optional Cryptographic Algorithms

− clients SHALL: DSA sig-alg-oid specified in section 7.2.2 of [RFC2459]

− clients SHOULD: RSA signatures as specified in section 7.2.1 of [RFC2459]

− responders SHALL: SHA1

4.4 Extensions

4.4.1 Nonce

nonce against replay:

− nonce as one of the requestExtensions in requests

− in responses it would be included as one of the responseExtensions

− object identifier id-pkix-ocsp-nonce

4.4.2 CRL References

if revoked then indicate CRL where revoked

id-pkix-ocsp-crl OBJECT IDENTIFIER ::= { id-pkix-ocsp 3 }

CrlID ::= SEQUENCE { crlUrl [0] EXPLICIT IA5String OPTIONAL, crlNum [1] EXPLICIT
INTEGER OPTIONAL, crlTime [2] EXPLICIT GeneralizedTime OPTIONAL }

For the choice crlUrl, the IA5String will specify the URL at which the CRL is available. For
crlNum, the INTEGER will specify the value of the CRL number extension of the relevant CRL.
For crlTime, the GeneralizedTime will indicate the time at which the relevant CRL was issued.

4.4.3 Acceptable Response Types

d-pkix-ocsp-response OBJECT IDENTIFIER ::= { id-pkix-ocsp 4 }

AcceptableResponses ::= SEQUENCE OF OBJECT IDENTIFIER

4.4.4 Archive Cutoff

− specifies how many years after expiration the revocation inforamation is retained, this
si"archive cutoff" date

4.4.5 CRL Entry Extensions

All the extensions specified as CRL Entry Extensions - in Section 5.3 of [RFC2459] - are also
supported as singleExtensions.

4.4.6 Service Locator

OCSP server receives a request and reroutes it to another OCSP

serviceLocator request extension used

d-pkix-ocsp-service-locator OBJECT IDENTIFIER ::= { id-pkix-ocsp 7 }

ServiceLocator ::= SEQUENCE { issuer Name, locator AuthorityInfoAccessSyntax OPTIONAL }

62

Values defined in certificate asked

5. Security Considerations

− flood of queries,

− signed and unsigned both enable DOS

− precomputation helps

− HTTP caching might be risky: “Implementors are advised to take the reliability of HTTP
cache mechanisms into account when deploying OCSP over HTTP .”

RFC 2693 SPKI Certificate Theory

experimental, SPKI Working Group, authorization rather than authentication.

• ACL: an Access Control List: a list of entries, "list of root keys" that may start certification
chain for a resource, ACL not signed

• CERTIFICATE: signed, gives the rights. contains: Issuer, Subject, [validity conditions,
authorization, delegation information]. categories:

− ID (mapping 〈name,key〉),

− Attribute (mapping 〈authorization,name〉),

− Authorization (mapping 〈authorization,key〉)

rights transferable or not

• ISSUER: the signer of a certificate

• KEYHOLDER: entity that controls a given private key.

• PRINCIPAL: a cryptographic key, capable of generating a digital signature.

• SPEAKING: A principal "speaks" by means of signed messages ("speak for" the Key-
holder)

• SUBJECT: thing empowered by a certificate or ACL entry: key, name, set of keys

• S-EXPRESSION: LISP- like parenthesized expression, no empty list, 1st element is a "type"
string

• THRESHOLD SUBJECT: K out of N threshold scheme. only 1/K power to a single
Subject, K of them necessary to get the rights

Name Certification

− classical PKI: biding names and public keys

63

− PGP: key rings

− SPKI: rethinking global names,

− not much added value for security

− unique in local domain,

− global directions dangerous

− identifiers should be random of a proper length

Inescapable Identifiers

inescapable identifiers: e.g. from ID cards, commertial CA: disputable

Local Names

SDSI 1.0: how to use local names globally .

Basic SDSI Names

SDSI 2.0 name is an S-expression with two elements: the word "name" and the chosen name.

george: (name fred)

name "fred" in the name space defined by george.

2.6.2 Compound SDSI Names

If fred defines a name

fred: (name sam)

and george defined fred, then george referes to sam as:

george: (name fred sam)

2.7 Sources of Global Identifiers

• public keys

• hash of public key

2.8 Fully Qualified SDSI Names

− name space defined by public key

− chain of names in a name space

− certificate: CA’s public key is the name space

2.9 Fully Qualified X.509 Names

X.509: (name 〈root〉key 〈leaf〉name)

(name 〈root〉key 〈CA(1)〉 〈CA(2)〉 ... 〈CA(k)〉 〈leaf〉name)

2.10 Group Names

− more than one key per name admitted

64

− this might be a group

3.1 Attribute Certificates

X.9.57:

authorization → name → key

X.509v3 Extensions

authorization → name

authorization → key

SPKI Certificates:

authorization → key

or

authorization → key → name (the name irrelevant for security)

3.4 ACL Entries

SPKI ACL grants authorization to names.

− like attribute certificate,

− not signed since local

− as local data need not to be standardized

4. Delegation

ability to delegate authorizations from one person to another without bothering the owner of the
resource(s) involved.

a simple permission (e.g., to read some file) or issue the permission to delegate that permission

issues:

− to limit depth of delegation

− separating delegators from those who can exercise the delegated permission

4.1 Depth of Delegation

no control, boolean control and integer control

4.1.1 No control

free delegation, no limitations

4.1.2 Boolean control

boolean control to specify an inability to delegate

e.g. export restrictions

4.1.3 Integer control

depth up to k

4.3 Delegation of Authorization vs. ACLs

flexibility in delegation, mimicking real life processes

65

5. Validity Conditions

− optional

− traditional: not-before, not-after

− online tests: CRL, re-validation, one-time

− dependent on the issuer!

5.1 Anti-matter CRLs

traditional CRL have non-deterministic dissemination proces – such CRL excluded in SPKI

5.2 Timed CRLs

result must be deterministic. conditions:

1. The certificate must list the key (or its hash) that will sign the CRL and may give one or more
locations where that CRL might be fetched.

2. The CRL must carry validity dates.

3. CRL validity date ranges must not intersect. That is, one may not issue a new CRL to

take effect before the expiration of the CRL currently deployed.

5.3 Timed Revalidations

CRLs are negative statements.

Revalidation reverses the decision.

Process must be deterministic

5.4 Setting the Validity Interval

risk managements determines the period

5.5 One-time Revalidations

Validity intervals of length zero are not possible.

For those who want to set the validity interval to zero, SPKI defines a one-time revalidation.

no lifetime beyond the current authorization computation. One applies for this on-line, one-time
revalidation by submitting a request containing a nonce. That nonce gets returned in the signed
revalidation instrument, in order to prevent replay attacks.

5.6 Short-lived Certificates

5.7.2 Rivest’s Reversal of the CRL Logic

validity condition model is flawed because it assumes that the issuer (or some entity to which it
delegates this responsibility) decides the conditions under which a certificate is valid. – like for
military model

in the commercial space, the verifier takes the risk. It should therefore be the verifier who decides
what level of assurance he needs before accepting a credential.

66

not reflected in the SPKI structure definition.

6. Tuple Reduction

way of processing the information

automatic verification of certificates, path recognition, threshold issues, cooperation with PGP,
X.509, ...

7. Key Management

keys not revoked, certificates with a limited lifetime

suicide note+ health certificate : not in the RFC

FIPS PUB 140-2, SECURITY REQUIREMENS FOR CRYPTOGRAPHIC MOD-
ULES

• Federal Information Processing Standards, NIST, recommendations and standards based
on US law

• for sensitive but unclassified information

• levels: 1-4

• Cryptographic Module Validation Program (certification by NIST and Canadian authority)

• need to use “approved security functions” if to be used in public sector, waivers concerning
some features are possible

• Levels:

− Level 1: cryptographic module with at least one approved algorithm, no physical
protection (like a PC)

− Level 2:

− tamper evident seals for access to CSP (critical security parameters)

− role base authentication for operator,

− refers to PPs, EAL2 or higher

or secure operating system

− Level 3:

− protection against unauthorized access and attempts to modify cryptographic
module, detection probability should be high,

− CSP separated in a physical way from the rest

− identity based authentication+ role based of an identified person (and not
solely role based as on level 2)

67

− CSP input and output - encrypted

− components of cryptographic module can be executed in a general purpose
operating system if

• PP fulfilled, Trusted Path fulfilled

• EAL 3 or higher

• security policy model (ADV.SPM1)

− or a trusted operating system

− Level 4:

− like level 3 but at least EAL4

• a more detailed overview:

• more details:

− roles: user, crypto officer, maintenance

68

− services: to operator: show status, perform self-tests, perform approved secu-
rity function, bypassing cryptographic operations must be documented etc.

− auhentication: pbb of a random guess <
1

1000000
, one minute attemps: <

1

100000
,

feedback obscured

− physical security:

− full documentation,

− if maintenance functionalities, then many features including erasing
the key when accessed

− protected holes, you cannot put probing devices through the holes

− level 4: environmental failure protection (EFP) features or undergo
environmental failure testing (EFT) – prevent leakage through unusual
conditions

• more details:

− operational environment:

− L1: separation of processes, concurrent operators excluded, no
interrupting cryptographic module,Approved integrity tech-
nique (HMAC?)

− L2: operating system control functions under EAL2, specify
roles to operate, modify,..., crypto software withing crypto-
graphic boundary, audit: recording invalid operatons, capable
of auditing the following events:

operations to process audit data from the audit trail,

requests to use authentication data management mechanisms,

69

use of a security-relevant crypto officer function,

requests to access user authentication data associated with the
cryptographic module,

use of an authentication mechanism (e.g., login) associated with
the cryptographic module,

explicit requests to assume a crypto officer role,

the allocation of a function to a crypto officer role.

− L3: EAL3, trusted path (also included in audit trail)

− L4: EAL4

− key management:

− non-approved RNG can be used for IV or as input to approved
RNG

− list of approved RNG: refers to an annex and annex to NIST
document from 2016 (with a link to 2015)

− list of approved key establishment - again links

− key in out: automated (encrypted) or manual (splitted in L3 or
L4)

− tests: self-test and power-up. No crypto operation if something wrong.
tests based on known outputs

− Pair-wise consistency test (for public and private keys).

− Software/firmware load test.

− Manual key entry test.

− Continuous random number generator test.

− Bypass test – proper switching between bypass and crypto

ENFORCING HARDWARE SECURITY IN PRACTICE

TBD - notes still missing

FIPS Approved Random Number Generators

• nondeterministic generators not approved

• deterministic: special NIST Recommendation,

• first approved entropy source creates a seed , then deterministic part

70

Instantiation:

− seed has a limited period

− reseeded function requires a different seed

− different instantiations can exist at the same time, they MUST be independent in terms of
the seeds and usage

Internal state:

− contains cryptographic chain value AND the number of requests so far

− different instantiations of DRBG must have separate internal states

Instantiation strength:

− frmally defined as ”112, 128, 192, 256 bits”, intuition: number of bits to be guessed

− Security_strength_of_output = min(output_length, DRBG_security_strength)

functions:

− instantiate: initializing the internal state, prepering to use

− generate: generating output bits as PRNG

− reseed: combines the internal state with new entropy to change the seed

− uninstantiate: erase the internal state

− test: checks correctnes of components on the chip

DRBG mechanism boundary:

− not cryptographic module boundary

− DRBG internal state and operation shall only be affected according to the DRBG mech-
anism specification

− the state exists solely within the DRBG mechanism boundary, not -accessible from outside

− information about internal state only via specified output

71

Seed:

− entropy is obligatory, entropy strength should be at least the entropy of the output

− reseeding: nonce not used, the internal state used

− approved randomness source obligatory for entropy source

− nonce: not secret. Example nonces:

− a random value from an approved generator

− a trusted timestamp of sufficient resolution (never use the same timestamp)

− monotonically increasing sequence number

− combination of a timestamp and a monotonically increasing sequence number, such

that the sequence number is reset when and only when the timestamp change

− not used for any other purposes

reseed:

− ”for security”

− argument: it might be better than uninstantiate and instantiate due to aging of ran-
domness source

personalization:

− not security critical, but the adversary might be unaware of it (analogous to a login)

resistance:

− backtracking resistance: given internal state at time t it is infeasible to distinguish between
the output for period [1, t− 1] and a random output

− prediction resistance: “Prediction resistance means that a compromise of the DRBG
internal state has no effect on the security of future DRBG outputs. That is, an adver-
sary who is given access to all of the output sequence after the compromise cannot distinguish
it from random output with less work than is associated with the security strength of the
instantiation; if the adversary knows only part of the future output sequence, he cannot
predict any bit of that future output sequence that he does not already know (with better
than a 50-50 chance). – refers only to reseeding

72

distinguishability from random input or predicting missing output bits

specific functions:

• (status, entropy_input) = Get_entropy_input (min_entropy, min_ length, max_

length, prediction_resistance_request),

• Instantiation:

→ checks validity of parameters

→ determines security strength

→ obtains entropy input, nonce

→ runs instantiate algorithm to get initial state

→ returns a handle

Instantiate_function(requested_instantiation_security_strength,
prediction_resistance_flag, personalization_string)

prediction_resistance_flag determines whether consuming application may request
reseeding

• Reseed:

→ Explicit request by a consuming application,

→ if prediction resistance is requested

→ also if the upper bound on the number of genereted outpus reached

→ also due to external events

steps:

→ checks validity of the input parameters,

→ determines the security strength

→ obtains entropy input, nonce

→ runs reseed algorithm to get initial state

• Generate function:

Generate_function(state_handle,requested_number_of_bits,requested_security_strength,

prediction_resistance_request, additional_input)

• Removing a DRBG Instantiation:

Uninstantiate_function (state_handle)

internal state zeroized

Hash_DRBG

73

variants:

− hash algorithms: SHA-1 up tp SHA-512

− parameters determined, e.g. maximum length of personalization string

− seed length typically 440 (but also 888)

state:

→ value V updated during each call to the DRBG

→ constant C that depends on the seed

→ counter reseed_counter: storing the number of requests for pseudorandom bits since new
entropy_input was obtained during instantiation or reseeding

instantiation:

1. seed_material = entropy_input || nonce || personalization_string

2. seed = Hash_df (seed_material, seedlen) (hash derivation function)

3. V = seed

4. C = Hash_df ((0x00 || V), seedlen)

5. Return (V, C, reseed_counter)

reseed:

1. seed_material = 0x01 || V || entropy_input || additional_input

2. seed = Hash_df (seed_material, seedlen)

3. V = seed

4. C = Hash_df ((0x00 || V), seedlen)

5. reseed_counter = 1

6. Return (V, C, and reseed_counter).

generating bits:

1. If reseed_counter > reseed_interval, then return “reseed required”

2. If (additional_input � Null), then do

2.1 w = Hash (0x02 || V || additional_input)

2.2 V = (V + w) mod 2seedlen

74

3. (returned_bits) = Hashgen (requested_number_of_bits, V)

4. H = Hash (0x03 || V)

5. V = (V + H + C + reseed_counter) mod 2seedlen

6. reseed_counter = reseed_counter + 1

7. Return (SUCCESS, returned_bits, V, C, reseed_counter)

Hashgen:

1. m =
requested− no− of− bits

outlen

2. data = V

3. W = Null string

4. For i = 1 to m

4.1 w = Hash (data).

4.2 W = W || w

4.3 data = (data + 1) mod 2seedlen

5. returned_bits = leftmost (W, requested_no_of_bits)

6. Return (returned_bits).

HMAC_DRBG

Update (used for instantiation and reseeding)

1. K = HMAC (K, V || 0x00 || provided_data)

2. V = HMAC (K, V)

3. If (provided_data = Null), then return K and V

4. K = HMAC (K, V || 0x01 || provided_data)

5. V = HMAC (K, V)

6. Return (K, V).

Instantiate:

1. seed_material = entropy_input || nonce || personalization_string

2. Key = 0x00 00...00

3. V = 0x01 01...01

4. (Key, V) = HMAC_DRBG_Update (seed_material, Key, V)

75

5. reseed_counter = 1

6. Return (V, Key, reseed_counter)

Reseed:

1. seed_material = entropy_input || additional_input

2. (Key, V) = HMAC_DRBG_Update (seed_material, Key, V)

3. reseed_counter = 1

4. Return (V, Key, reseed_counter).

Generate bits:

1. If reseed_counter > reseed_interval, then return “reseed required”

2. If additional_input � Null, then

(Key, V) = HMAC_DRBG_Update (additional_input, Key, V)

3. temp = Null

4. While len (temp) < requested_number_of_bits do:

4.1 V = HMAC (Key, V)

4.2 temp = temp || V

5. returned_bits = leftmost (temp, requested_number_of_bits)

6. (Key, V) = HMAC_DRBG_Update (additional_input, Key, V)

7. reseed_counter = reseed_counter + 1

8. Return (SUCCESS, returned_bits, Key, V, reseed_counter).

CTR_DRBG

a generator based on an encryption function, AES versions

internal state:

− value V of blocklen bits, updated each time another blocklen bits of output are produced

− keylen-bit Key, updated whenever a predetermined number of output blocks are gener-
ated

− counter (reseed_counter) = the number of requests for pseudorandom bits since instan-
tiation or reseeding

− ctr_len is a parameter known by implementation

Update Process:

1. temp = Null

76

2. While (len (temp)< seedlen, do

2.1 If ctr_len < blocklen

2.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2ctrlen.

2.1.2 V = leftmost (V, blocklen-ctr_len) || inc

Else V = (V+1) mod 2blocklen

2.2 output_block = Block_Encrypt (Key, V)

2.3 temp = temp || output_block

3. temp = leftmost (temp, seedlen)

4. temp = temp ⊕ provided_data

5. Key = leftmost (temp, keylen)

6. V = rightmost (temp, blocklen).

Instantiate:

1. pad personalization_string with zeroes

2. seed_material = entropy_input ⊕ personalization_string

3. Key = 0keylen

4. V = 0blocklen

5. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

6. reseed_counter = 1

7. Return (V, Key, reseed_counter).

reseeding is similar

Generate:

1. If reseed_counter > reseed_interval, then “reseed required”

2. If (additional_input� Null), then

2.1 temp = len (additional_input).

2.2 If (temp< seedlem) then pad additional_input with zeroes

2.3 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).

Else additional_input = 0seedlen

3. temp = Null

4. While (len (temp)<requested_number_of_bit), do

4.1 If ctr_len< blocklen

77

4.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2ctrlen

4.1.2 V = leftmost (V, blocklen-ctr_len) || inc

Else V = (V+1) mod 2blocklen

4.2 output_block = Block_Encrypt (Key, V).

4.3 temp = temp || output_block

5. returned_bits = leftmost (temp, requested_number_of_bits)

6. (Key, V) = CTR_DRBG_Update (additional_input, Key, V)

7. reseed_counter = reseed_counter + 1

8. Return (SUCCESS, returned_bits, Key, V, reseed_counter).

BLOCKCHAIN

notes still missing

ACCESS CONTROL

• decision whether a subject (user, etc) is allowed to carry out a specific

action (operation) on an object (resource)

• policy – set of rules of (axioms + derivation rules) for making the decision

• main models:

− Access Control Matrix or Access Matrix (AM)

− Access Control List (ACL)

− Role-Based Access Control (RBAC)

− Attribute-Based Access Control (ABAC)

• principles:

− least priviledge

− explicit permissions needed or admitted unless prohibited

− rule administration is critical

78

AM

− Objects O, Subjects S, Access function

− Objects are protected

− a Subject may get access to an Object

− access function define concrete admissible operations (e.g. read,...)

− application areas: database systems, operating systems

problems of AM: lack of scalability, central administration, no flexibility, enormous effort

ACL

− object centric: for each object a list of admissed subjects

− corresponds to SPKI - a good cryptographic framework

− there are file systems based on ACL, Red Hut Linux: default ACL in a directory

− relational database systems, SQL systems, network administration

advantages of ACL: close to business models, simple, easy to implement in small and static systems,
flexible,

problems of ACL:

i. management of subjects is hard

ii. poor scalability

iii. changes might be tedious

iv. impossible as global access control

alternative approach: capability tickets for subjects

RBAC

− organization:

− subjects ↔ roles

− roles ↔ permissions

− RBAC1: hierarchy of roles, a role gets all permissions from its lower roles in the hierarchy,
roles form directed acyclic graph

− RBAC2: RBAC0+constraints (on mappings):

− Mutually exclusive: a user can get only one role in a set, permission can be granted
to only one role in a set, ...

− cardinality: number of subjacts witha given role

79

− prerequisitives: necessary to have another role before

−

− RBAC3=RBAC1 consolidated with RBAC2

− RBAC sessions

− RBAC constraints

− advantages of RBAC:

− simple management of users

− managable in large systems

− problems of RBAC:

− no fine tuning of access rights

− problems with dynamic changes

− no useful in open systems

advantages of RBAC:

− simple management of users

− managable in large systems

problems of RBAC:

− no fine tuning of access rights

− problems with dynamic changes

− no useful in open systems

ABAC

− components:

− access control related entities

− attributes of entities

− policy

− policy evaluation engine

− entities: requestor (Req), resource (Res), action (Act), environment (Env)

− attributes: anything (role, age, date and time (for Env)...)

− policy specification: logic of AC in terms of a policy

80

− policy evaluation: process answering access queries, computaton based on entities, attributes
and current policies – ADF (access decision function)

− standard: eXtensible Access Control Markup Language (XACML)

→ Policy Enforcement Point (PEP)

→ Policy Decision Point (PDP)

→ Policy Administration Point (PAP)

→ Policy Information Point (PIP)

− steps:

i. a request from the user gets to PEP

ii. PEP sends the request to PDP

iii. PDP gets attributes by querying PIP

iv. PDP makes the decison and sends to PEP

v. PEP sends decision to the user

− major problems:

i. creating policies is a complicated task, errors are likely

ii. trade-off between expresiveness and complexity of evaluation

81

