
copyright: Mirosªaw Kutyªowski, Politechnika Wrocªawska

Security and Cryptography 2020

FIPS concept of secure devices

Mirosªaw Kutyªowski

� CC is a general top-down approach with �build from components� strategy

� there is a tradition of bottom-up approaches, trying to cover one-by-one necessary cases,
focused on secure cryptographic modules

� the bottom-up approach is more specific to USA, while top-down for Europe

� �While the security requirements specified in this standard are intended to maintain the
security provided by a cryptographic module, conformance to this standard is not sufficient
to ensure that a particular module is secure.�

FIPS PUB 140-2, SECURITY REQUIREMENS FOR CRYPTOGRAPHIC MODULES

� Federal Information Processing Standards, NIST, recommendations and standards based on
the US law

� for sensitive, but unclassified information (classified information: military, etc)

� levels: 1-4, (just as EAL levels � but the meaning of the levels is different)

� Cryptographic Module Validation Program (certification by NIST and Canadian authority)

Architecture

� CSP: Critial security parameters � all values that must not be leaked such as crypto-
graphic secret keys, entropy used, PRNG seed and internal state, . . .

focus on protecting them by e.g. separation of logical and physical layer

� approved security functions: cryptographic functions to be used inside e.g. hash functions

− compulsory, if to be used in the US public sector,

− waivers concerning some features are possible (only if the application of the standard
makes more harm)

− other (non-approved) functions may be also implemented

� CB: cryptographic boundary, explicit separation of the region where CSP live and are used

CB need not to take the whole device

� modes of operation: secure modes only with approved security functions, insecure mode
with not approved functions

Levels (rough description, like for EAL):

− Level 1: cryptographic module with at least one approved algorithm, no physical protec-
tion (like a PC), software implementation of cryptographic functions is possible

− Level 2:

− tamper evident seals for access to CSP (critical security parameters)

− role base authentication for the operator,

− refers to certain PPs, EAL2 or higher, or a secure operating system

− Level 3:

− protection against unauthorized access and attempts to modify cryptographic module,
detection probability should be high,

− CSP separated in a physical way from the rest

− identity based authentication+ role based of an identified person (and not solely role
based as on level 2)

− CSP input and output - encrypted

− components of the cryptographic module can be executed in a general purpose oper-
ating system if

� PP fulfilled, Trusted Path fulfilled

� EAL 3 or higher

� security policy model (ADV.SPM1)

− or a trusted operating system

− Level 4:

− like level 3 but at least EAL4

Documentation

− modes of operation, list of approved and non-approved security functions

− all software and hardware components, CB, and part not in CB (with explanation why outside
CB)

− physical ports and logical interfaces, input and output data paths

− manual or logical controls of a cryptographic module, physical or logical status indicators,
and applicable physical, logical, and electrical characteristics

− block diagram of all components with interconnections

− high-level specification languages for software/firmware or schematics for hardware

− specification of all security-related information

− cryptographic module security policy, following the standards

Cryptographic Module Ports and Interfaces

− separate interfaces for Cryptographic Module, but may go through shared physical ports

− 4 obligatory interfaces:

− data input interface

− data output interface

− control input interface

− status output interface

− The output data path shall be logically disconnected from the circuitry and processes while
performing key generation, manual key entry, or key zeroization.

− Stronger requirements for Level 3 and 4 (separation)

Roles, Services, and Authentication

− operator - roles - services

− separation of processes if operator can work concurrently with some process

− roles:

− user

− crypto officer

− maintenance

− services: show status to operator, perform self-tests, perform approved security function,
bypassing cryptographic operations (bypassing cryptographic processing) if implemented:

− two independent internal actions shall be required to activate the capability (to prevent
activating by mistake)

− the module shows bypassing status (activated, non-activated, alternating)

Authentication

− pbb of a random guess < 1

1000000

− one minute attemps: < 1

100000

− feedback to operator obscured (password character do not appear on the screen, etc)

Finite states model

just as you have probably learnet for smartcards. There is a classification of states helping to
separate different activities:

− Power on/off states

− crypto officer states

− key/CSP entry states

− user states

− self-test states

− error states

− bypass states

− maintenence states

Physical security

− full documentation,

− if maintenance functionalities, then many features including erasing the key when accessed

− protecting against probing: one cannot put probing devices through the holes

− level 4: environmental failure protection (EFP) features or undergo environmental failure
testing (EFT) � prevent leakage through unusual conditions

operational environment:

− L1: separation of processes, concurrent operators excluded, no interrupting cryptographic
module, approved integrity technique

− L2: operating system control functions under EAL2, specify roles to operate, modify,...,
crypto software within cryptographic boundary,

audit: recording invalid operations, capable of auditing the following events:

� operations to process audit data from the audit trail,

� requests to use authentication data management mechanisms,

� use of a security-relevant crypto officer function,

� requests to access user authentication data associated with the cryptographic module,

� use of an authentication mechanism (e.g., login) associated with the cryptographic module,

� explicit requests to assume a crypto officer role,

� the allocation of a function to a crypto officer role.

− L3: EAL3, trusted path (also included in audit trail)

− L4: EAL4

key management:

− non-approved RNG can be used for IV or as input to approved RNG

− list of approved RNG: refers to an annex and annex to NIST document

− list of approved key establishment methods - again links

− key in/out: automated (encrypted) or manual (splitted in L3 and L4)

Tests

self-test and power-up. No crypto operation if something wrong. tests based on known outputs

− Pair-wise consistency test (for public and private keys)

− Software/firmware load test

− Manual key entry test

− Continuous random number generator test

− Bypass test � proper switching between bypass and crypto

Design assurance

− configuration management (e.g unique Id numbers)

− delivery assurance

− functional specification

− L1: naming components responsible for tasks according to the security policy, source
code for software, HDL for hardware

− L2: informal description of cryptographic module, ports, interfaces, and the purpose of
the interfaces.

− L3: high level language description of software and hardware

− L4: formal description in rigorous notation, proof of model completeness, proof for formal
model versus functional specification, source code with comments and preconditions
+postconditions

Mitigation of Other Attacks

− power analysis: the voltage level depends very much on what operations are executed and
on which data

− time analysis: the same, but the computation time may leak the internal state

− fault injection: in case of a fault the original cryptographic security argument does not hold
(unless designed . . .)

− TEMPEST - electromagnetic leakage

it is known that even the sound emitted by a chip may leak a key (old attack against RSA by A
Shamir)

--

FIPS Approved Random Number Generators

an example of the NIST approach � standardization of cryptographic functions that are to be
deployed on cryptographic secure modules according to FIPS 140-2

� nondeterministic generators not approved,

� deterministic: special NIST Recommendation, in fact �deterministic� means deterministic
but with some random input

� first an approved entropy source creates a seed , then deterministic part

Architecture of the generator

Instantiation:

− the seed has a limited time period, after that period a new seed has to be used

− reseeded function requires a different seed

− different instantiations of a DRNG can exist at the same time, they MUST be independent
in terms of the seeds and usage

Internal state:

− it contains cryptographic chain value AND the number of requests so far (each request
corresponds to an output)

− different instantiations of DRBG must have separate internal states

Instantiation strength:

− formally defined as �112, 128, 192, 256 bits�, intuition: number of bits to be guessed

− Security_strength_of_output = min(output_length, DRBG_security_strength)

Functions executed:

− instantiate: initializing the internal state, preparing DRNG to use

− generate: generating output bits as DRNG

− reseed: combines the internal state with new entropy to change the seed

− uninstantiate: erase the internal state

− test: internal tests aimed to detect defects of the chip components

DRBG mechanism boundary:

− this is not a cryptographic module boundary

− DRBG internal state and operation shall only be affected according to the DRBG mechanism
specification

− the state exists solely within the DRBG mechanism boundary, it is not accessible from outside

− information about the internal state is possible only via specified output

Seed:

− entropy is obligatory, entropy strength should be not smaller than the entropy of the output

− approved randomness source is obligatory as an entropy source

− reseeding: a nonce is not used, the internal state is used

− nonce: it is not a secret. Example nonces:

− a random value from an approved generator

− a trusted timestamp of sufficient resolution (never use the same timestamp)

− monotonically increasing sequence number

− combination of a timestamp and a monotonically increasing sequence number, such

that the sequence number is reset iff the timestamp changes

− not used for any other purposes

reseed operation:

− �for security�

− argument: it might be better than uninstantiate and instantiate due to aging of the
entropy source

− the main difference: the internal state is used! instantiate does not use the state

personalization:

− not security critical, but the adversary might be unaware of it (analogous to a login)

resistance:

− backtracking resistance: given internal state at time t it is infeasible to distinguish between
the output for period [1; t− 1] and a random output

− prediction resistance: �Prediction resistance means that a compromise of the DRBG
internal state has no effect on the security of future DRBG outputs. That is, an adversary
who is given access to all of the output sequence after the compromise cannot distinguish
it from random output with less work than is associated with the security strength of the
instantiation; if the adversary knows only part of the future output sequence, he cannot
predict any bit of that future output sequence that he does not already know (with better than
a 50-50 chance). � refers only to reseeding (before reseeding the output is predictable)

distinguishability from random input or predicting missing output bits

specific functions:

� (status, entropy_input) = Get_entropy_input (min_entropy, min_ length, max_

length, prediction_resistance_request),

� Instantiation:

! checks validity of parameters

! determines security strength

! obtains entropy input and a nonce

! runs instantiate algorithm to get the initial state

! returns a handle to this DRNG instantiation

Instantiate_function(requested_instantiation_security_strength,
prediction_resistance_flag, personalization_string)

prediction_resistance_flag determines whether consuming application may request reseeding

� Reseed:

! there must be an explicit request by a consuming application,

− if prediction resistance is requested

− if the upper bound on the number of genereted outpus reached

− due to external events

steps:

! checks validity of the input parameters,

! determines the security strength

! obtains entropy input, nonce

! runs reseed algorithm to get a new initial state

� Generate function (outputs the bits)

Generate_function(state_handle,requested_number_of_bits,requested_security_strength,

prediction_resistance_request, additional_input)

� Removing a DRBG Instantiation:

Uninstantiate_function (state_handle)

internal state zeroized (to prevent problems in case of a device compromise)

Hash_DRBG

comment:

− hash function considered as pseudorandom function

− one can use a random walk: h1=Hash(V);h2=Hash(h1); h3=Hash(h2); ::::

variants:

− hash algorithms: SHA-1 up to SHA-512

− parameters determined, e.g. maximum length of personalization string

− seed length typically 440 (but also 888)

state:

! value V updated during each call to the DRBG

! constant C that depends on the seed

! counter reseed_counter: storing the number of requests for pseudorandom bits since new
entropy_input was obtained during instantiation or reseeding

instantiation:

1. seed_material = entropy_input || nonce || personalization_string

2. seed = Hash_df (seed_material, seedlen) (hash derivation function)

3. V = seed

4. C = Hash_df ((0x00 || V), seedlen)

5. Return (V, C, reseed_counter)

reseed:

1. seed_material = 0x01 || V || entropy_input || additional_input

2. seed = Hash_df (seed_material, seedlen)

3. V = seed

4. C = Hash_df ((0x00 || V), seedlen)

5. reseed_counter = 1

6. Return (V, C, reseed_counter)

generating bits:

1. If reseed_counter > reseed_interval, then return �reseed required�

2. If (additional_input =/ Null), then do

2.1 w = Hash (0x02 || V || additional_input)

2.2 V = (V + w) mod 2seedlen

3. (returned_bits) = Hashgen (requested_number_of_bits, V)

4. H = Hash (0x03 || V)

5. V = (V + H + C + reseed_counter) mod 2seedlen

6. reseed_counter = reseed_counter + 1

7. Return (SUCCESS, returned_bits, V, C, reseed_counter)

Hashgen:

1. m = requested− no− of−bits
outlen

2. data = V

3. W = Null string

4. For i = 1 to m

4.1 w = Hash (data).

4.2 W = W || w

4.3 data = (data + 1) mod 2seedlen

5. returned_bits = leftmost (W, requested_no_of_bits)

6. Return (returned_bits)

HMAC_DRBG

Update (used for instantiation & reseeding) HMAC_DRBG_Update (provided_data, Key, V):

1. Key = HMAC (Key, V || 0x00 || provided_data)

2. V = HMAC (Key, V)

3. If (provided_data = Null), then return Key and V

4. Key = HMAC (Key, V || 0x01 || provided_data)

5. V = HMAC (Key, V)

6. Return (Key, V)

Instantiate:

1. seed_material = entropy_input || nonce || personalization_string

2. Key = 0x00 00...00

3. V = 0x01 01...01

4. (Key, V) = HMAC_DRBG_Update (seed_material, Key, V)

5. reseed_counter = 1

6. Return (V, Key, reseed_counter)

Reseed:

1. seed_material = entropy_input || additional_input

2. (Key, V) = HMAC_DRBG_Update (seed_material, Key, V)

3. reseed_counter = 1

4. Return (V, Key, reseed_counter).

Generate bits:

1. If reseed_counter > reseed_interval, then return �reseed required�

2. If additional_input =/ Null, then

(Key, V) = HMAC_DRBG_Update (additional_input, Key, V)

3. temp = Null

4. While len (temp) < requested_number_of_bits do:

4.1 V = HMAC (Key, V)

4.2 temp = temp || V

5. returned_bits = leftmost (temp, requested_number_of_bits)

6. (Key, V) = HMAC_DRBG_Update (additional_input, Key, V)

7. reseed_counter = reseed_counter + 1

8. Return (SUCCESS, returned_bits, Key, V, reseed_counter).

CTR_DRBG

this generator is based on an encryption function, choice: 3DES with 3 keys or AES 128, 192, 256

internal state:

− V of blocklen bits, updated each time another blocklen bits of output are produced

− Key of keylen-bit bits, updated whenever a predetermined number of output blocks is
generated

− counter (reseed_counter) = the number of requests for pseudorandom bits since
instantiation or reseeding

− ctr_len is a parameter depending on implementation, counter field length, at least 4, at
most ctr_len�blocklen, for example important when 3DES is used: ctr_len is only 64

Update Process: CTR_DRBG_Update (provided_data, Key, V):

where provided_data has length seedlen

1. temp = Null

2. While (len (temp)< seedlen, do

2.1 If ctr_len < blocklen /* comment: counter increased in the suffix)

2.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2ctrlen.

2.1.2 V = leftmost (V, blocklen-ctr_len) || inc

Else V = (V+1) mod 2blocklen

2.2 output_block = Block_Encrypt (Key, V)

2.3 temp = temp || output_block

3. temp = leftmost (temp, seedlen)

4. temp = temp � provided_data

5. Key = leftmost (temp, keylen)

6. V = rightmost (temp, blocklen).

Instantiate:

1. pad personalization_string with zeroes

2. seed_material = entropy_input � personalization_string

3. Key = 0keylen

4. V = 0blocklen

5. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).

6. reseed_counter = 1

7. Return (V, Key, reseed_counter).

reseeding is similar

Generate:

1. If reseed_counter > reseed_interval, then �reseed required�

2. If (additional_input=/ Null), then

2.1 temp = len (additional_input).

2.2 If (temp< seedlem) then pad additional_input with zeroes

2.3 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).

Else additional_input = 0seedlen

3. temp = Null

4. While (len (temp)<requested_number_of_bit), do

4.1 If ctr_len< blocklen

4.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2ctrlen

4.1.2 V = leftmost (V, blocklen-ctr_len) || inc

Else V = (V+1) mod 2blocklen

4.2 output_block = Block_Encrypt (Key, V).

4.3 temp = temp || output_block

5. returned_bits = leftmost (temp, requested_number_of_bits)

6. (Key, V) = CTR_DRBG_Update (additional_input, Key, V)

7. reseed_counter = reseed_counter + 1

8. Return (SUCCESS, returned_bits, Key, V, reseed_counter).

Models and solutions based on AES

data:

inside the generator: key, state

from outside: input

leakage:

− only data from computations are leaked

− bounded leakage: � entropy bits per iteration, some (probabilistic) leakage function

− non-adaptive leakage: leakage function fixed in advance

− simultable leakage: there is always some leakage output. The best situation when the real
leakage can be simulated and the adverary cannot distinguish if it is a simulation

knowledge of adversary (some options):

− Chosen-Input Attack (CIA): key hidden, state known, input chosen by adversary

− Chosen-state Attack (CSA): key hidden, state chosen by the adversary, input known

− Known-Key Attack (KKA): key known, state hidden, inputs known

almost not considered: key known, state known, inputs with low entropy and somewhat pre-
dictable

Some constructions

Construction 1 (against CIA, CSA,KKA)

− setup: 128-bit string X chosen at random

− initialize: 128 bit strings K and S chosen at random

− generate function (with input I):

1 U : =K �X2+S �X + I mod 2128

2 S :=AESU(1)

3 output AESU(2)

Construction 2 (separating entropy extraction and output generation - separating information
theoretic arguments from cryptographic procedures)

− setup: 1024-bit strings X;X 0 chosen at random

− initialize: 1024-bit string S chosen at random

− refresh with I:

1 S :=S �X + I

− next (with input I):

1 U := [X 0 �S]256

2 S :=AESU(1)AESU(2)::::AESU(8)

3 R :=AESU(9)

