
copyright: Mirosªaw Kutyªowski, Politechnika Wrocªawska

Security and Cryptography 2020

IV. Cache Attacks

Mirosªaw Kutyªowski

Cache attacks against a process

� side channel attack via measuring time

� similar mechanism as used for Meltdown: detecting cache misses indicates some particular
execution pattern

Example: �Cache Missing for fun and profit� by Colin Percival

goal: find the RSA private key from OpenSSL executen on Pentium4 (original attack)

practical issues about cache:

− if there is a victim thread and a spy thread then in the time between switching victim to spy
the whole L1 can be evicted anyway as it is small

− L1: is very fast, time differences between a hit and miss and fetching from L2 are not big,
problematic time measuring with rdtsc by the spy thread

− instructions are not loaded into L1 there as to L2, no noise of this kind in L1

− problems with hardware prefetcher: if a few cache misses occurs on subsequent addresses
then a few cache line fetched �just for the case� � so the spy process inspecting cache
misses must �jump � between addreses

− TLB misses influence time as wel, TLB does not cover whole L2

OpenSSL RSA implementation

� Chinese Remainder Theorem used:

− instead of computing admodn, where n= p � q

− one computes admod p and admod q and combines the results with ChRT

− so: smaller numbers in game

� sliding window exponentiation method

− precomputed values: a3; a5; : : : ; a31mod p

− �square and multiply� method: a series of squarings x := x2 mod p; and multiplications
x: =x � a2k+1

− squaring and multiplication use different algorithms with different �footprints� left in the
cache

− footprint also indicates approximately k from x: =x � a2k+1

Factorization of RSA number n when some bits of p and q are known

starting from j=1 to logn find candidates pmod 2j ; qmod 2j such that

p � q=nmod 2j

when we increase j we can prune the some solutions � those that have bits different from the
ones already known

Remark

� libraries often guard against such problems � no subroutines with variable time

� .. but frequently not the case:

− if the public key not stored but only encrypted secret key, then public key recomputed
(ECDSA)

− computation must be based on plaintext secret key exponentiation

so: a potential point of leakage via cache timings if sliding window used

Secure processing in a Data Center

� multiprocess architectures, with strict separation between processes offered by the system:
hypervisor and virtualization, sandboxing, ...

� an attacker process tries to get secrets from victim processes without having any priviledges

− theoretically virtualization solves the problem

� despite separation protection the processes share cache

� there is a strict control over the cache content but cache hits and cache misses might be
detected by timing for the attacker's process (and not of the victim process)

� the timing for cache access should somehow depend on the sensitive information to be
retreived

� difficulty: other than in the classical cryptanalysis � access to plaintext or ciphertext might
be impossible (they belong to the victim process) - the attacker can only predict something

CASE STUDY: AES encryption

AES software implementation:

� particularly vulnerable because of its design

� AES defined in algebraic terms, but lookup table is typically faster

� there are arguments against algebraic implementations as the execution time may provide a
side channel

� key expansion: round zero: simply the key bytes directly, other rounds: key expansion reversable
(details irrelevant for the attack)

� fast implementation based on lookup tables T0; T1; T2; T3 and T0
(10)

; T1
(10)

; T2
(10)

; T3
(10) for

the last round (with no MixColumns)

� round operation(
x0
(r+1)

; x1
(r+1)

; x2
(r+1)

; x3
(r+1)�

:=T0(x0
r)�T1(x5r)�T2(x10r)�T3(x15r)�K0

(r+1)

(
x4
(r+1)

; x5
(r+1)

; x6
(r+1)

; x7
(r+1)�

:=T0(x4
r)�T1(x9r)�T2(x14r)�T3(x3r)�K1

(r+1)

(
x8
(r+1)

; x9
(r+1)

; x10
(r+1)

; x11
(r+1)�

:=T0(x8
r)�T1(x13r)�T2(x2r)�T3(x7r)�K2

(r+1)

(
x12
(r+1)

; x13
(r+1)

; x14
(r+1)

; x15
(r+1)�

:=T0(x12
r)�T1(x1r)�T2(x6r)�T3(x11r)�K3

(r+1)

attack notation:

− � = B /entrysize of lookup table, typically: entrysize=4bytes, � = 16, (so � entries of a
lookup table are within the same cache line � this is a complication for the attack!)

− for a byte y let hyi= by/�c, it indicates a memory block of y in Tl

− if hyi= hzi; then x and y correspond to requests to the same memory block of the lookup
table and therefore to the same cache line

− Qk(p; l; y) = 1 iff AES encryption of plaintext p under key K accesses memory block of
index y in Tl at least once in 10 rounds

− Mk(p; l; y)= measurement, its expected value is bigger when Qk(p; l; y)=1 then if when
Qk(p; l; y)= 0

�synchronous attack�

− plaintext random but known, corresponds to the situation where one can trigger encryption
(e.g. VPN with unknown key, dm-crypt of Linux)

− phase 1: measurements, phase 2: analysis

− from experiments: AES key recovered using 65 ms of measurements (800 writes) and 3 sec
analysis

attack on round 1:

i accessed indices for lookup tables are simply xi
(0)
= pi� ki for i=0; : : : ; 15

ii goal: find information hkii of ki � one cannot derve information on lsb; candidates for
ki are denoted by ki�

iii if hkii= hki� i and hyi= hpi� ki� i; then Qk(p; l; y)= 1 for the lookup Tl
(
xi
(0)�

iv if hkii=/ hki� i, then there is no lookup in block y for Tl during the first round, but

− there are 4 �9−1=35 other accesses affected by other plaintext bits during the entire
encryption (4 per round, 9 rounds in total as the last round uses different look-up
tables)

− probability that none of them accesses block y for Tl is�
1− �

256

�35
� 0.104 for �= 16

v few dozens of samples required to find a right candidate for hkii

vi together we determine log(256/�)= 4 bits of each byte of the key

vii no more possible for the first round, still 64 key bits to be found, so one cannot do the
rest with a brute force

viii in reality more samples needed due to noise in measurements Mk(p; l; y) and not Qk(p;
l; y)

attack on round 2: the goal is to find the still unknown key bits

i we exploit equations derived from the Rijndeal specification:

x2
(1)
= s(p0� k0)� s(p5� k5)� 2 � s(p10� k10)� 3 � s(p15� k15)� s(k15)� k2

x5
(1)= s(p4� k4)� 2 � s(p9� k9)� 3 � s(p14� k14)� s(p3� k3)� s(k14)� k1� k5

x8
(1)
= : : ::

x15
(1)
= : : ::

where s stands for the Rijndael Sbox, and �means multiplication in the field with 256
elements

ii lookup for T2
(
x2
(1)�:

− hk0i; hk5i; hk10i; hk15i; hk2i already known

− low level bits of hk2i influence only low bits of x2
(1) so not important for cache access

pattern

− the upper bits of x2
(1) can be determined after guessing low bits of k0; k5; k10; k15:

there are �4 possibilities (=164)

− a correct guess yields a lookup in the right place

− an incorrect guess: some ki=/ ki� so

x2
(1)�x�2

(1)= ci � s(pi� ki)� ci � s(pi� k�i)� : : :

where ... depends on different random plaintext bits and therefore random

− differential properties of AES studied for AES competition:

Pr[ci � s(pi� ki)� ci � s(pi� k�i)=/ z]> 1−
�
1− �

256

�
3

so the false positive for lookup in T2 at a given block:

−
�
1− �

256

�
3
for computing T2

(
x2
(1)�

−
�
1− �

256

�
for computing each of the remaining invocations of T2

− together no access with pbb about
�
1− �

256

�38
− this yields about 2056 samples necessary to eliminate all wrong candidates

− it has to repeated 3 more times to get other nibbles of key bytes

iii optimization: guess �= ki�kj and take pi� pj=�, then i.e. s(p0� k0)� s(p5� k5)
cancels out and we have to guess less bits (4 instead of 8)

− similar attack: last round - created ciphertext must be known to the attacker, otherwise
similar. Subkey from the last round learnt, but key schedule is reversable

− cache measurement strategy: Evict+Time

i procedure:

1 trigger encryption of a plaintext p

2 evict: access memory addresses so that one cache set overwritten completely

3 trigger encryption of the plaintext p

ii in the evicted cache set one cache line from Tl is missing

iii measure time: if long, then cache miss and the encryption refers to evicted � positions
from the lookup table

iv practical problem: triggering may invoke other activities and timing is not precise

− measurement: Prime+Probe

i procedure

1 prime: overwrite entire cache by reading A: a contiguous memory of the size of the
cache

2 trigger an encryption of p � it results in eviction at places where lookup has occurred

3 probe: read memory addresses of A and detect which locations have been evicted

ii easier: probe timing suffices to check, if encryption used a given cache set

− complications in practice:

i address of lookup tables in the memory - how they are loaded to the cache remains
unknown � offset can be found by considering all offsets and then statistics for each offset
(experiments show good results even in a noisy environment)

ii hardware prefetcher may disturb the effects. Solution: read and write the addresses of
A according to a pseudorandom permutation

− practical experiments: e.g. Athlon 64, no knowledge of adresses mapping, 8000 encryptions
with Prime & Probe

Linux dm-crypt (disk, filesystem, file encryption): with knowledge of addressing, 800 encryp-
tions (65 ms), 3 seconds analysis, full AES key

extensions of the attack:

− on some platforms timing shows also position of the cache line (better resolution for one-
round attack)

− remote attacks (VPN, IPSec): with requests that trigger immediate response (situation yet
unclear about practicality)

�asynchronous attrack� on round 1

− no knowledge of plaintext, no knowledge of ciphertext

− based on frequency F of bytes in e.g. English texts, frequency score for each of 256
�

blocks
of length �

− F is nonuniform: most bytes have high nibble = 6 (lowercase characters �a� through �o�)

− find j such that j is particularly frequent indicates j=6�hkii and shows hkii

− complication: this frequency concerns at the same time k0, k5, k10, k15 affecting T0 so we
learn 4 nibbles but not their actual allocation to k0, k5, k10, k15

− the number of bits learnt is roughly: 4 � (4 � 4− log4!)� 4 � (16− 3.17)� 51 bits

− experiment: OpenSSL, measurements 1 minute, 45.27 info bits o on the 128-bit key gathered

Bernstein's attack

− an alternative way of computing AES, algorithm applied in OpenSSL:

! two constant 256-byte tables: S and S 0

! expanded to 1024-byte tables T0, T1, T2, T3

T0[b] = (S 0[b]; S[b]; S[b]; S[b]�S 0[b])

T1[b] = (S[b]�S 0[b]; S 0[b]; S[b]; S[b])

: : ::

! AES works with 16-byte arrrays x and y, where x initialized with the key k, y initialized
with n� k, where n is the plaintext

! AES computation is modifications of x and y:

i x viewed as (x0; x1; x2; x3) (4 bytes parts)

ii e := (S[x3(1)� 1]; S[x3(2)]; S[x3(3)]; S[x3(0)])

iii replace (x0; x1; x2; x3)with (e�x0; e�x0�x1; e�x0�x1�x2; e�x1�x2�x3)

iv replace y=(y0; y1; y2; y3) with

(T0[y0[0]]�T1[y1[1]]�T2[y2[2]]�T3[y3[3]]�x0;

(T0[y1[0]]�T1[y2[1]]�T2[y3[2]]�T3[y0[3]]�x1;

(T0[y2[0]]�T1[y3[1]]�T2[y0[2]]�T3[y1[3]]�x2;

(T0[y3[0]]�T1[y0[1]]�T2[y1[2]]�T3[y2[3]]�x3

v 2nd round uses �2 instead of �1 for x, otherwise the same. Similar changes corre-
sponding to rounds up to 9

vi in round 10 use S[]; S[]; S[]; S[] instead of T 0s

vii y is the final output

it is embarassing how simple the attack is:

! it has been checked in practice that execution depends on k[i]� p[i] - which is a position
in the table:

− try many plaintexts p

− collect statistics for each byte for p[i]

− the maximum occurs for z

− the maximum corresponds to a fixed value for k[i]� p[13], say c

− compute k[13] = c� z

! for different bytes different statistics observed: for some t a few values k[t]�plaintext[t],
where substantially higher time observed

! statistic gathered, different packet lengths

! finally brute force checking all possibilites, nonce encrypted with the server key

Countermeasures

� �no reliable and practical countermeasure� so far

� implementation based on no-lookup but algebraic algorithm (slow!!!) or bitslice implemen-
tation (sometimes possible and nearly as efficient as lookup)

� alternative lookup tables: if smaller then smaller leakage (but easier cryptanalysis for small
Sboxes)

� data-independent access to memory blocks - every lookup causes a redundant read in all
memory blocks, generally: oblivious computation possible theoretically, but overhead makes
it rather useless

� masking operations: ��we are not aware of any method that helps to resist our attack�

� cache state normalization: load all lookup tables - equires deep changes in OS and reduces
efficiency, even then LRU cache policy may leak information which part has been used!

� process blocking: again, deep changes in OS

� disable cache sharing: deep degradation of performance

� �no-fill� mode during crypto operations:

− preload lookup tables

− activate �no-fill�

− crypto operation

− deactivate �no-fill�

the first two steps are critical and no other process is allowed to run

possible only in priviledged mode, cost of operation prohibitive

� dynamic table storage: e.g. many copies of each table, or permute tables

details architecture dependent and might be costly

� hiding timing information: adding random values to timing makes the statistical analysis
harder but still feasible

� protect some rounds (the first 2 and the last one) with any mean � but may be there are
other attack techniques...

� cryptographic services at system level: good but unflexible

� sensitive status for user processes: erasing all data when interrupt

� specialized hardware support: crypto co-processor seems to be the best choice

but the problem is not limited to AES or crypto � many sensitive data operations are not
cryptographic and a coprocessor does not help

