
copyright: Mirosªaw Kutyªowski, Politechnika Wrocªawska

Security and Cryptography 2020

III. Malicious Devices

Mirosªaw Kutyªowski



Standards:

It is not true that a standard solution is by definition a secure solution.

Standardization process:

� representatives of countries, not necessarily specialists

� strong representation of interests of industry

� target: a unified solution

� no open evaluation as in case of e.g. NIST competitions

� long process, many standards never used in practice

Example: ANSI X9.31 PRG

� approved PRNG by FIPS and NIST between 1992 and 2016

� now deprecated by NIST

� many devices based on X9.31 have FIPS certificates, widely used



Algorithm

! initialization - seeding: select initial seed s= (K; V ), with random V and pre-generated
key K

− K used for the lifetime of the device

− V will change

! generate (generating bits and changing the internal state):

1 input the current state si−1=(K;Vi−1) and the current timestamp Ti

2 intermediate value: Ii :=EncK(Ti)

3 output: Ri :=EncK(Ii�Vi−1)

4 state update: Vi :=EncK(Ri� Ii)



Problems with seeding:

� NIST standard says: �This K is reserved only for the generation of

pseudo-random numbers�, and explains length,

� NIST standard does not say how K is generated

� consequences:

! certification documentation may skip the problem of generating K

! in some cases the key is encoded in software or hardware and the same for all devices

and there is no reason to reject application for a certificate



an attack is based on the key K recovered from software

1 observe Ri and Ri+1

2 guess timestamp Ti, Ti+1 and check that :

DecK(Ri+1)�EncK(Ti+1)=EncK(Ri�EncK(Ti))

where the sides of the equation are equal to:

(Ii+1�Vi)� Ii+1=EncK(Ri� Ii)

Vi=Vi

3 if the test shows equality, then the timestamps are ok and Vi appears on both sides

4 having K and Vi one can recover states forwards and backwards each time adjusting the
guesses for timestamp � as long as the (portions) of the generated sequence are available.
For backwards:

! Rt=EncK(It�Vt−1), so Vt−1=DecK(Rt)� It
! having Vt−1 compute Rt−1=DecK(Vt−1)� It−1



the attack requires the key K and guessing two consecutive timestamps

! implementations do not care about it and use consecutive outputs e.g. for DH exponent,
separating them would help

! presenting two output blocks of the PRNG is necessary for the attack � so presenting at
most one block would help

! it would help to use DH exponent as a hash of the output of PRNG and some data hard
to guess by the attacker, but many protocols do not do it

! attacking either side may help for DH, but for RSA key transport the party choosing the
secret must be affected



DUAL EC -standardized backdoor

− NIST, ANSI, ISO standard for PRNG, from 2006 till 2014 when finally withdrawn

− problems reported during standardization process: bias that would be unacceptable for con-
structions based on symmetric crypto, finally 2007 a paper of Dan Shumow and Niels
Ferguson with an obvious attack based on kleptography (199*)

− DUAL EC dead for crypto community since 2007 but not in industry

� deal NSA -RSA company (RSA was paid to include DUAL EC)

� products with FIPS certification had to implement Dual EC, no certificate when P and
Q generated by the device

� discouraging generation of own P and Q by NIST

� used in many libraries: BSAFE, OpenSSL, ...

� in 2007 an update of Dual EC that makes the backdoor more efficient

� changes in the TCP/IP to ease the attack (increasing the number of consecutive random
bits sent in plaintext)



algorithm:

− basic scheme:

! state si+1= f(si), where s0 is the seed

! generating bits: ri: =g(si)

! both f anf g must be one-way functions in a cryptographic sense

− Dual EC, basic version:

! points P and Q �generated securely� by NSA but information classified,

! si+1: =x(si �P ) (that is, the �x� coordinate of the point on an elliptic curve)

! ri: =x(si �Q)

! this option used in many libraries

− Dual EC with additional input:

! if additional input given then update is slightly different:

! ti := si�H(additonalinputi); si+1 :=x(ti �P )



Attack: with a backdoor d, where P = d �Q

− for basic version:

! from ri reconstruct the EC point Ri (immediate, two options)

! compute si+1 as x(d �Ri) (no knowledge of the internal state si required)

− for additional input:

− it does not work in this way since the � operation is algebraically incompatible with scalar
multiplication with the points of elliptic curve

− however it does not help much: frequently more than one block ri is needed by the
consuming application and simply the next step(s) is executed without additional input
� at this moment the adversary learns the internal state

− the attacker have problems if cannot trace the additional input: gradually looses control
over the state of PRNG



Dual EC 2007:

− an update to �increase security�

− an extra step after request for bits, before using additional input:

! si+1 :=x(si �P ),
! ti+1 := si+1�H(additional inputi+1)
! si+2 :=x(ti+1 �P )
! ri+2 :=x(si+2 �Q)

− attack:

− reconstruct si+1 :=x(d �Ri)

− compute ti+1 and si+2 for guessed additional input, then check against ri+2 (the test
works also if ri+2 is used as an exponent for DH and only the result of exponentiation
is visible for the attacker

Practical attack issues:

− some products do not use entire ri and skip some number of bits. Frequently this is 16 bits
� which makes the attack 216 times longer. Truncating say 100 bits would secure the design,
but this is not done

− some protocols disclose the original PRNG output. Then increasing the size of such a block
eases the attack, as some steps are executed without additional input and the time complexity
goes down

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------



Kleptography

� dual EC is onl one example of kleptography, unfortunately �in the field�

� idea:

− install a trapdoor in a device

− the trapdoor usess a �public key�

− the attacker holds a matching private key

− the output of the device is indistinguishable from the output of the honest machine

− with the private key one can break security of the device, get access to secret information,
etc

− .. while with the �public key� this is impossible

� if one can find the kleptographic code in the device then the attack is evident, but what if
tamper resistant?



Example: generating Schnorr signatures

� the malicious device contains U = gu, the attacker knows u

� creating 1st signature:

1 k chosen at random, r: =gk

2 e :=Hash(M; r)

3 s := k− e �x

4 output (s; e), retain k

� creating 2nd signature

1 k 0 :=Hash(Uk), r 0 := gk
0

2 e0 :=Hash(M 0; r 0)

3 s0 := k 0− e0 �x

� attacker getting the secret x no matter how well it has been created:

1 r := gs �Xe

2 k 0 :=Hash(ru)

3 x := (k 0− s0)/e0



Example: Diffie Hellman key exchange

� the malicious device contains U = gu, the attacker knows u

� key exchange i :

1 ka chosen somehow

2 ca := gka

3 K := cb
ka

� key exchange i+1:

1 ka
0 :=Hash(Uka),

2 ca
0 := gka

0

3 K 0 := cb
0ka0

� attacker getting session key K:

1 ka
0 :=Hash(cau)

2 K 0 := cb
0ka0

warning: it suffices to have a malicious device on one side to tap the line!



Example: slow leakage via a random string

� the malicious device contains U = gu, the attacker knows u, secret s to be leaked

� leaking, when PRNG secure:

1 cryptographic boundary: k chosen at random,

2 then r: =gk computed outside PRNG, V :=Uk

3 a := (k most significant bits of V )

4 test: if bit k+1 of V is different from ath bit of s then return to 1

5 proceed with the original protocol, r exported as part of the output

� attacker:

1 gets a cryptographic message with r

2 V := ru

3 a := (k most significant bits of V )

4 retrieve the ath bit of s as bit k+1 of V

so separating generation of k is a secure perimeter helps to launch the attack: PRNG does not
know what is going on outside and creates r's on demand

Furthermore: what if PRNG uses this procedure to leak own internal state? This is why we need
the reseed procedure with entropy input.



Practical issues

� existence of a kleptographic code can be detected by power and time analysis,

� e.g. in case of Schnorr signatures 2 exponentiations instead of 1: total time can be hidden
by speeding up, but not the statistical characteristics (average deviation of computation time
for 2 exponentiations is smaller than in case of 1 (2xslower) exponentiation

� clever complicated constructions that take it into account

Further threats

� generating RSA keys so that the adversary can get the private key from the public one



HARDWARE TROJANS

goal of a Trojan: change hardware so that the chip functionally seems to work as claimed,
but it opens a backdoor for the attacker

attack moment:

− chip planning (easy)

− chip manufacturing (hard)

− hardware components from third parties (easy)

− outsourcing fabrication (likely to occur due to production line costs)

methods of testing:

− functional tests (not really helpful for trapdoors, the most dangerous are hidden faults
that do not disrupt operation)

− internal tests circuitry (putting some values and observing results on single compo-
nents along so called test path, or dedicated tests like checking CRC of memory contents)

− distructive - chemical-mechanical polishing and inspection under microscope etc, it can
detect modifications on layout level, very costly procedure, specialized labs necessary

− side channel information (especially comparing with a �golden chip� behavior � the
chip that is ideal and follows the specification) - delay path analysis, static current analysis,
transient current analysis



classical attacks: the trojans should remain undetected during the testing phase, so the attack
has to be triggered by an unlikely event. Options used:

− an attack triggered by an unlikely event known to the attacker but not to the evaluator

− an attack starts when some counter reaches a certain value

− attack occurs due to aging or via a random event (e.g. for enabling fault analysis)

some countermeasures:

− regions: design a chip so that it consists of �regions�

− for each region there must be a test path so that the activities are concentrated in this
region while the rest stays almost idle,

− then the side channel (such as energy usage) may be attributed to that region

− a hardware Trojan should be concentrated in some region and then substantially change
the side channel of that region

− avoid rare-triggered nets

− insert configurable security monitors

− variant-based parallel execution of the same function



Analog attack: A2

goal: in a certain situation change a priviledge bit (the rest of the attack follows some scenario)

limitations:

− no change in a digital circuit, only some analog parts added

− very limited regarding area (so playground for ASICs, which are less optimized � less com-
pressed )

− trojans preferably in layer 1 to avoid collisions with routing etc

construction idea:

− a single capacitor added,

− the capacitor is loaded each time a triggering event occurs

− if triggering events occur in a short period of time, then the capacitor loaded to a certain
voltage causing a flip-flop operation to occur (changing a bit to a predefined value)

− the capacitor discharged gradually so if triggering events occur infrequently, then the flip-
flop operation never executed



a more robust construction:

− choosing relative capacity of capacitors one can control the number of triggering events
needed

Figure 1.

(from paper: A2: Analog Malicious Hardware, Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd
Austin, Dennis Sylvester)



Figure 2.

transistor M0: allows flow at low voltage, transistor M1: allows flow at high voltage

detector: it could be for instance an inverter � changing the output would create some
malicious consequences

extensions:

− use a few such analog circuits and combine them

− e.g.: both must �fire� (AND operation), one of them suffices (�OR�) � in theory any circuit
possible however the attacker is limited by space available



Dopant Trojans

CMOS inverter: (image Wikipedia)

Figure 3.

where: A is the source, Vdd positive supply , Vss is ground

upper transistor: PMOS (allows current flow at low voltage)

lower transistor: NMOS (allows current flow at high voltage)

how it works:

− if voltage is low, then the lower transistor (NMOS) is in high resistance state and the current
from Vdd flows to Q (high voltage)

− if voltage is high, then the upper transistor MOS) is in high resistance state and the current
from Vss flows to Q while Vdd has low voltage



PMOS: in dopant area �holes� (positive) playing the role of conductor, low voltage creates
depletion area, high voltage attracts them

NMOS: in dopant area electrons (negative) playing the role of conductor, high voltage pushes
the electrons out

For physical realization of a transistor see excellent videos from

https://www.youtube.com/watch?v=7ukDKVHnac4&t=116s

https://www.youtube.com/watch?v=stM8dgcY1CA



CMOS inverter in the �bird eye perspective�:



(nice diagram from EPFL, �Design of VLSI Systems�)



Trojan design:

The idea is to inject wrong dopant and thereby disable or enable connection regardless of the
voltage

− whatever happens the VDD is connected to the output

− whatever happens the VSS is disconnected with the output



Detailed pictures from the original paper:



Trojan True Random Number Generator consists of

− entropy source (physical)

− self test circuit (OHT - online health test)

− deterministic RNG, Intel version:

generate 128-bit numbers when the internal state is (K; c) (by �rate matcher�):

1 c := c+1, r :=AESK(c), output r

2 c := c+1, x :=AESK(c)

3 c := c+1, y :=AESK(c)

4 K :=K �x

5 c := c� y

− reseeding (by �conditioner�)

1 c := c+1, x :=AESK(c)

2 c := c+1, y :=AESK(c)

3 K :=K �x� s

4 c := c� y� t



attack option 1: fix K by applying Trojan transistors, if K is known, then it is easy to find
internal state c from r and then the consecutive random numbers r

attack option 2: fix all but n bits of c then only n bits of entropy and the output r has
only n entropy bits - to the attack does not need to see anything, just prediction possible
(helpful e.g. against randomized signature schemes)

problem with Built-In-Self-Test: implemented according to FIPS: after power-up the RNG
is tested against aging:

− known LFSR creates bits strings for conditioner and rate matcher, entropy source dis-
abled, a 32-bit CRC from the result computed and checked against a known value,

− knowing the test one can find how to manipulate K and c without detection, simple
exaustive search can be applied



Side channel Trojan:

− side channel resistant logic: Masked Dual Rail Logic

i for each a both a and negation of a computed

ii precharge: each phase preceded by charging all gates

iii masking operations by random numbers



computing a^ b :

− input a�m, a�:m, b�m, b�:m, m, :m

− detection, SR-latch stage and majority gate

gates on the picture: OR � 3 gates in the detection , AND - the right gate in the Detection,
NOR (output 1 if all inputs 0)- the OR gate with a dot

SR-latch is a bi-stable circuit. It remains stable in the state (0,1) and in (1,0). These values
encode two bitvalues



see https://www.allaboutcircuits.com/textbook/digital/chpt-10/s-r-latch/



attacking not-majority gate (original picture):

Idea: instead of cutting output there is low voltage in a certain situation

− the same behavior except for A = 0 and B; C = 1, where good output but high power
consumption due to connection between VDD and VSS

− the upper pair of transistors do not disappear from the layout but are changed so that in
fact constant connections are created.

− weakness of the transistors is created via reducing dopant areas (dopant creates free electrons
or hole that may �jump�. Alone reducing the size of active area makes a transistor weak.



− computing majority works as normal except for the case that am=0; bm=1;m=1 or

a�
m
=0; b�m=1;m� =1. In both cases we have a=1; b=0

− high power consumption can be detected, in this way we learn the internal state



Artificial aging

make some transistors disfuctional (as ithe case of PRNG)

method:

− apply too high voltage at certain areas

− the electrons accelerate and break barrier - damages

− effect the same as of aging a chip

− the transistor changes its operational characteristic



Problems:

� Trojan may be triggered by some particular event, detection becomes harder

� Trojan may work in very particular physical conditions, e.g. temperature, voltage

Defense methods:

− on-chip checks: detection of unexpected behavior, e.g. delay characteristics: workload path
and a shadow path that provides result after fixed time, + comparison

− ring osscilators on the chip detecting nonstandard behavior

− methods to enable activation in certain areas only

− inserting PUFs, (either randomize as much as possible - noise over trojan information)

− keep algorithms deterministic

− secure coding: take into account the situation that certain components are not working
properly

− external watchdog techniques



Sophisticated design problems

motto: high level description might be perfect, but some advanced mechanisms in hardware that
are invisible to users may create trapdoors

situation: low level hardware details are frequently proprietary information

Meltdown � attack on modern processors

� standard acceleration technique: out-of-order execution of commands:

− instead of executing just the current operation i, the processor executes operations i,
i+1, :::, i+ k

− apart from the current operation, the next ones are executed conditionally: if the exe-
cution of operations i; i+1; :::; i+ j − 1 have influence on the input of operation i+ j
then the result for operation i+ j executed in advance is discarded

− . . . the way to speed up when the hardware has reached its limits

� kernel and checking access rights:

− the system is organized as �secure operating system� - (recall FIPS)



− logically the rules are strict: access rights checked so a user cannot access restricted data
in the protected kernel area

− it takes care of read/write access in the sense of the operating system

− . . . but there are indiect ways to learn the data



Core idea

goal: read arbitrary memory address by an unpriviledged user

instruction sequence

1; rcx = kernel address

2; rbx = probe array

3 retry:

4 mov al, byte [rcx] reading a byte from protected address rcx to al

5 shl rax, 0xc multiplying rax by 4096 , so the byte from al is shifted

6 jz retry jump due to some bias to 0 in al

7 mov rbx, qword [rbx + rax] reading from location rbx+rax

How it is executed:

− the instruction 4 leads to violation of access rights and consequently it will be interrupted,
with temporary values erased

− in the meantime instructions 5-7 might be executed in advance, all results retired after
interrupt � except for the effects of accessing the cache



Cache

− cache is necessary: gap between CPU speed and latency of memory access, innermost cache
access �0.3ns, main memory access �50ns to 150ns

− set-associative memory cache:

− cache line (cache block) of B bytes

− a row consisting of W cache lines

− S cache sets, each consisting of a row

− when a cache miss occurs, then a memory block is copied into one of cache lines evicting
its previous contents

− a memory block with address a can be cached only into the cache set with the index i
such that i= ba/BcmodS � this is crucial for the attack

− cache levels: slight complication to the attacks but differences of timing enable to recognize
the situation



Attack

array rbx has size 256�4096 (256 pages)

mechanism:

− before we execute the code we make sure that the whole array rbx is evicted from the cache

− by overwriting all line of the cache by different read operations

− during the code execution only one address is fetched to the cache because of cache miss

− provided that instruction 7 is executed before the sequence is retired due to interrupt

− afterwards the attacker reads the whole array rbx page by page:

− all time the cache misses (long execution time) . . .

− except for the page with the number stored in rcx


