copyright: Mirosław Kutyłowski, Politechnika Wrocławska

Security and Cryptography 2020 Mirosław Kutyłowski VIII. DISK ENCRYPTION

Problems

- random access decryption of each page independently
- sector size (512, 4096 bytes versus blocksize of encryption)
- some mode to be used:
 - ECB obviously wrong
 - CBC and other modes require IV, but there is no extra space for storing IV!
- different IV's or so-called "tweaking" inside each sector
- no extra space in a sector, encryption "in place"

Malleability

CBC: if the plaintext is known, then one can change every second block to a desired value (every second block would be junk):

- recall that $C_i = E_K(C_{i-1} \oplus P_i)$
- replace C_{i-1} with $C_{i-1} \oplus P_i \oplus P'$
- effect: then the ith block decrypts to P' (while block P_{i-1} will become junk)

$$New(P_i) = new(C_{i-1}) \oplus Dec_K(C_i) = (C_{i-1} \oplus P_i \oplus P') \oplus (C_{i-1} \oplus P_i) = P'$$

creating IV vectors (should not repeat!): Encrypted salt-sector initialization vector (ESSIV)

• $IV_n = Enc_K(n)$ where $K = Hash(K_0)$ and n is the sector number

Encryption algorithms

- attempts to use sector- size block ciphers not popular
- tweaking traditional block ciphers (tweakable narrow-block encryption)

LRW Liskov, Rivest, and Wagner

 $-C = \operatorname{Enc}_K(P \oplus X) \oplus X$ (\oplus denotes addition in the field)

where $X = F \otimes I$ (\otimes denotes multiplication in the field)

F is the additional key, I is the index of the block

- the issue of "red herrings": encrypting the block $F||0^n$:

$$C_0 = \operatorname{Enc}_K(F \oplus F \otimes 0) \oplus (F \otimes 0) = \operatorname{Enc}_K(F)$$

$$C_1 = \operatorname{Enc}_K(0 \oplus F \otimes 1) + F \otimes 1 = \operatorname{Enc}_K(F) \oplus F$$

so F will be revealed

Xor-encrypt-xor (XEX)

$$-X_J = \operatorname{Enc}_K(I) \otimes \alpha^J$$

$$-C_J = \operatorname{Enc}_K(P \oplus X) \oplus X$$

 $-\ I$ is the sector number, J is the block numer in the sector and α is a generator

XEX-based tweaked-codebook mode with ciphertext stealing (XTS)

- IEEE 1619 Standard Architecture for Encrypted Shared Storage Media
- different key for IV than for encryption ("through misunderstanding XEX specification")
- deals with the sector size not divisible by the block size
- for the last block
 - i expands the k byte plaintext with the last bytes of the ciphertext of the previous block,
 - ii the resulting ciphertext stores in place of the ciphertext of the previous block
 - iii the ciphertext from the previous block truncates to k bytes and stores as the last ciphertext
 - for decryption: the missing n-k bytes are recovered from decryption of the ciphertext of the last (originally) block
- problem: no MAC, one can manipulate blocks, something will be recovered!

Generating key for disk encryption from the password

Password-Based Key Derivation Function 2 (PBDKF2)

- Derived Key = PBDKF2 (PRF, Password, Salt, c, dkLen)
- c is the number of iterations requested
- Derived Key = $T_1 ||T_2|| ... ||T_{dklen/hlen}|$
- $-T_i = F(\text{Password}, \text{Salt}, c, i)$
- $F(Password, Salt, c, i) = U_1 \otimes U_2 \otimes ... \otimes U_c$ where \otimes stands for xor
- $-U_1 = PRF(Password, Salt, i)$
- $U_i = PRF(Password, U_{i-1})$ for 1 < j < c

slight problem: if password too long, then first processed by hash, then some trivial collisions

Password hashing competition

- organized by a group of people
- Argon2 winner
- some controversies
- design goals:
 - fills memory fast
 - tradeoff resilience (smaller area results in higher time but potentially compensated by ASIC)
 - scalability of parameters
 - number of threads can be high
 - GPU/FPGA/ASIC unfirendly
 - optimized for current processors

Argon2 key derivation function

inputs:

- message P (up to $2^{31}-1$ bytes)
- nonce S (up to $2^{31}-1$ bytes)
- **parameters**: degree of parallelism p, tag length τ , memory size m from 8p to $2^{32}-1$ kB, number of iterations t, version v, secret K (up to 32 bytes), associated data X (up to $2^{32}-1$ bytes)

extract-then-expand

- extract a 64 byte value: $H_0 = \operatorname{Hash}(p, \tau, m, t, v, y, \langle P \rangle, P, \langle S \rangle, S, \langle K \rangle, K, \langle X \rangle, X)$ where $\langle A \rangle$ denotes the length of A,
- **expand** using a variable length hash H':
 - initialize blocks B[i,j] with p rows (i=0,....,p-1) and $q=\lfloor \frac{m}{4p} \rfloor \cdot 4$ columns, each B[i,j] of 1kB
 - $-B[i,0] = H'(H_0||0000||i)$
 - $-B[i,1] = H'(H_0||1111||i)$
 - $-\ B[i,j] = G(B[i,j-1]||B[i',j']))$ where i',j' depend on the version, G is compression

- t iterations:

$$-B[i,0]=G(B[i,q-1]||B[i',j'])$$

$$-B[i,j] = G(B[i,j-1]||B[i',j'])$$

final

-
$$B_{\text{final}} = B[0, q-1] \oplus B[1, q-1] \oplus \oplus B[p-1, q-1]$$

-
$$\operatorname{Tag} = H'(B_{\text{final}})$$

variable length hashing

- $-\ H_x$ a hash function with output of length x
- if $\tau \leq 64$, then $H'(X) = H_{\tau}(\tau || X)$
- if $\tau > 64$:

$$r = \lceil \tau / 32 \rceil - 2$$

$$V_1 = H_{64}(\tau || X)$$

$$V_2 = H_{64}(V_1)$$

. . .

$$V_r = H_{64}(V_{r-1})$$

$$V_{r+1} = H_{\tau - 32r}(V_{r-1})$$

$$H'(X) = A_1||A_2||...||A_r||V_{r+1}$$

where A_i are the first 32 bits of V_i

compression function G

- Blake2b round function P used
- -G(X,Y) on 1kB blocks X,Y:
 - $R = X \oplus Y$, R treated as 8×8 matrix of 16-byte registers $R_0,, R_{63}$
 - $(Q_0, ..., Q_7) = P(R_0, ..., R_7)$ $(Q_8, ..., Q_{15}) = P(R_8, ..., R_{15})$

. . .

$$(Q_{56},, Q_{63}) = P(R_{56},, R_{63})$$

 $- (Z_0, Z_8,, Z_{56}) = P(Q_0, Q_8,, Q_{56})$

$$(Z_1, Z_9, ..., Z_{57}) = P(Q_1, Q_9, ..., Q_{57})$$

...

$$(Z_7, Z_{15}, ..., Z_{63}) = P(Q_7, Q_{15}, ..., Q_{63})$$

- finally output

$$Z \oplus R$$