
copyright: Mirosław Kutyłowski, Politechnika Wrocławska

Security and Cryptography 2020

Mirosław Kutyłowski

X. COMMUNICATION SECURITY

many mistakes in practice:

− risk of common (standard) groups

− cryptanalysis: most efficient number field sieve (NFS):

− complexity subexponential (for Zp it is exp(1.93+ o(1))(log p 1/3(loglog p)2/3)

− most time precomputation independent from the target number y (where log y to be
computed in a given group)

− the time dependant from y can be optimized to subexponential but much lower

− 512-bit groups can be broken, MitM attack can be mounted

− standard safe primes – seem to be ok, but attacker can amortize the cost over many attacks

− TLS with DH: frequently “export-grade” DH with 512 bit primes, about 5% of servers support
DHE_EXPORT, most servers (90% and more) use a few primes of a given length, after a
precomputation breaking for a given prime: reported as 90 sec

− TLS: client wants DHE, server offers DHE_EXPORT, but one can manipulate the messages
exchanged, so that the client treats the (p512, g, g

b) as a response to DHE – it is not an
implementation bug!

− sometimes non safe prime used (the number
p− 1

2
is composite), Pohling-Hellman method

can be used

− DH-768 breakable on academic level, claims: DH-1024 for state agencies in some countries

− recommendations:

− avoid fixed prime groups

− transition to EC (partially withdrawn due to required transition to post-quantum instead)

− deliberately do not downgrade security, even if seems to be ok

− follow the progress in computer algebra

Padding attack (Serge Vaudenay)

Attacked scenario:

− for encryption the plaintext should consist of some number of blocks of length b

− padding is always applied (even if unnecessary)

− if i positions have to be padded, write i times the number i . de-padding is obvious

− encrypt the resulting padded plaintext x1, ...,xN in the CBC mode with IV (fixed or random)

and a block cipher Enc:

y1=Enc(IV⊕ a1), yi=Enc(yi−1⊕xi)

− properties of CBC:

− efficiency

− a warning about confidentiality weakness: if IV fixed, then one can check that two plain-

texts have the same prefix of a given size

attack:

− manipulate the ciphertext

− destination node decrypts, it can detect incorrect padding

− decision: what to do if the padding is incorrect? Each reaction will turn out to be wrong:

→ reaction “reject”: creates padding oracle (attacker tests the behavior)

→ reaction “proceed”: enables manipulation of the plaintext data

option “reject”, last word oracle:

− goal: compute a=Dec(y) for a block y

− create an input for the padding oracle:

− create a 2 block ciphertext: r= r1...rb chosen at random, c := r |y

− oracle call: if Oracle(c) = valid, then Dec(y)⊗ r should yield a correct padding. whp

this happens if ab=rb⊕1 (that is, if the padding consists of a single “1”). Other options:

suffix “22”, “333”, “4444”,.... are less probable

− it may happen that the oracle says valid because of other correct padding. The following

procedure solves the problem (idea: change consequtive words in the padding until invalid:

1 pick r1, r2..., rb at random, take i=0

2 put r= r1r2...rb−1(rb⊕ i)

3 run padding oracle on r |y, if the result invalid then increment i and goto (2)

4 rb := rb⊕ i /* now we have a correct padding of an unknown length

5 for j= b to 2:

r := r1...rb−j(rb−j+1⊕ 1)rb−j...rb

/* attempting to disturb padding, from left to right

ask padding oracle for r |y, if invalid then output (rb−j+1⊕ j)...(rb⊕ j) and halt

6 output rb⊕1 /* last choice, manipulating all positions except the rightmost has not

created an error so the padding has length 1, so yb⊕ rb=1 or yb= rb⊕ 1

block decryption oracle

let a1...ab be the plaintext of y

decryption:

− get ab via the last word oracle

− proceed step by step learning aj−1 once aj , ..., ab are already known

1 set rk := ak⊕ (b− j+2) for k= j , ..., b /* preparing the values so that the padding
values (b− j+2) appear at the end)

2 set r1, ..., rj−1 at random, i := 0 /* search for the value that makes a proper padding

3 r := r1...rj−2(rj−1⊕ i)rj...rb

4 if output on r |y is invalid, then i := i+1 and goto 3

5 output rj−1⊕ i⊕ (b− j+2)

decryption oracle

− block by block, (after decryption we have to XOR with the previous ciphertext block due to
CBC construction)

− the only problem is the first block if IV is secret

bomb oracles:

− padding oracle in SSL/TLS breaks the connection if a padding error occurs , so it can be
used only once

− bomb oracle: try a longer part at once, execute many trials

other paddings:

easy to adjust the attack in the following cases (the reason is that we KNOW hat to expect on
a given position of the padding) :

− 00....0n instead of nn....n

− 12....n instead of nn....n

the padding where it would not work is a padding with random data on the added positions

Applications for (old) versions of SSL/TLS, ...

− if MAC applied before padding, then padding oracle techniques can be applied

− wrong MAC and wrong padding create the same error message - from SSL v3.0, debatable

whether it is impossible to recognize the situation via side channel (response time)

− TLS attempts to hide the plaintext length by variable padding:

− checking the length of padding: take the last block y, send r |y where the last word of

r is n⊕ 1. acceptance indicates that the padding is of length

− IPSEC: discards message with a wrong padding, no error message, but there might be other

activities to process errors (they may leak information)

− WTLS: decryption-failed message in clear (!) session not interrupted

− SSH: MAC after padding (+)

Lucky Thirteen

− concerns DTLS (similar to TLS for UDP connections)

− MAC-Encode-Encrypt paradigm (MEE), MAC is HMAC based

− 8-byte SQN, 5-byte HDR (2 byte version field, 1 byte type field, 2 byte length field)

− size of the MAC: 16 bytes (HMAC-MD5), 20 bytes (HMAC-SHA1), 32 bytes (HMAC-SHA-
256)

− padding: p+1 copies of p, at least one byte must be added

− after receiving: checking the details: padding, MAC, (underflow possible if padding manipu-
lated and padding removed blindly)

− HMAC of M :

T : =H((Ka⊕ opad)||H((Ka⊕ ipad)||M))

− Distinguishing attack:

→ M0 : 32 arbitrary bytes followed by 256 copies of 0xFF (11111111 in binary)

→ M1: 287 bytes followed by 0x00

→ both M0 and M1 consist of 288 bytes, plaintext consists of 18 16-byte blocks

→ encoded Md||T ||pad, we aim to guess d

→ C= the resulting ciphertext

→ create a ciphertext C ′ by truncating all parts of C corresponding to T ||pad

→ give HDR||C ′ for decryption

→ for M0: the 256 copies of 0xFF interpreted as padding and removed, remaining 32 bytes

treated as a short message and MAC, calculating MAC: 4 hash block operations, then

typically error returned to the attacker

→ if M1: 8 hash evaluations as HMAC computed over a long message (then typically an

error)

Plaintext recovery attacks for CBC encrypted transmission

− C∗ – the block of ciphertext to be broken, C ′ – the ciphertext block preceding it

− we look for P ∗, where P ∗=Dec(C∗)⊕C ′

− assume CBC with known IV, b= 16 (as for AES). t= 20 (as for HMAC-SHA-1)

− let ∆ be a block of 16 bytes, consider

Catt(∆)=HDR||C0||C1||C2||C
′⊕∆||C∗

it represents 4 non-IV blocks in the plaintext, the last block is:

P4=Dec(C∗)⊕ (C ′⊕∆)=P ∗⊕∆

− case 1: P4 ends with 0x00 byte:

− 1 byte of padding is removed, the next 20 bytes interpreted as MAC, 43 bytes left -say

R. MAC computed on SQN|HDR|R of 56 bytes

− case 2: P4 ends with padding pattern of ≥2 bytes:

− at least 2 bytes of padding removed, 20 bytes interpreted as MAC, at most 42 bytes left,

MAC over at most 42+13=55 bytes

− case 3: P4 ends with no valid padding:

− according to RFC of TLS 1.1, 1.2 treated as with no padding , 20 bytes treated as MAC,

verification of MAC over 44+13=57 bytes

– MAC is computed to avoid other timing attacks!

− time: case 1 and 3: 5 evaluations of SHA-1, case 2: 4 evaluations of SHA-1, detection of

case 2 possible in LAN

− in case 2: most probable is the padding 0x01 0x01, all other paddings have probability about

≈
1

256
of probability of 0x01 0x01, so we may assume that P4=P

∗⊕∆ ends with 0x01 0x01.

Then we derive the last two bytes of P ∗.

repeat the attack with ∆′ that has the same last two bytes as ∆ to check if the padding has

the length bigger than 2 (we are changing the byte 3 and observe whether the case 2 occurs,

if it is so, then padding has length 2).

− after recovery of the last two bytes the rest recovered byte by byte from right to left:

− the original padding attack

− e.g. to find 3rd rightmost byte set the last two bytes ∆ so that P4 ends with 0x02

0x02, then try different values for the ∆ so that Case 2 occurs (meaning that P4 ends

with 3 bytes 0x02

− average time: 14 · 27 trials

− practical issues:

→ for TLS after each trial connection broken, so multi-session scenario

→ timing difference small, so necessary to gather statistical data

→ complexity in fact lower, since the plaintexts not from full domain: e.g. http username
and password are encoded Base64

→ partial knowledge may speed up the recovery of the last 2 bytes

→ less efficient configuration of the lengths for HMAC-MD5 and HMAC-SHA-256

———————————————

BEAST

attack, phase 0:

1. P to be recovered (e.g. a password, cookie, etc), requires ability to force Alice to put secret
bits on certain positions

2. force Alice to send 0...0P0 (requires malware on Alice computer) – of course encrypted

3. eavesdrop and get Cp=Enc(Cp−1⊕ 0...0P0)

4. guess a byte g

5. force Alice to send encrypted plaintext Ci−1⊕Cp−1⊕ 0...0g :

then Alice sends Ci=Enc(Ci−1⊕Ci−1⊕Cp−1⊕ 0...0g)=Enc(Cp−1⊕ 0...0g)

6. if Ci=Cp then P0= g

attack phase 1:

1. P0 already known

2. force Alice to send 0...0P0P1 and proceed as in phase 0

last phase: we get the test for the whole P0...P15

protection: browser must be carefully designed and do not admit injecting plaintexts (SOP- Same
Origin Protection). Some products do not implement it.

———————————————

CRIME (2012)

− based on compression algorithm used by some (more advanced) versions of TLS

− compression: LZ77 and then Huffman encoding, LZ77- sliding window approach: instead of
a string put a reference to a previous occurence of the same substring

− idea of recovering cookie:

modified POST:

− LZ77 compresses the 2nd occurence of secretcookie= or secretcookie=0. We try all

secretcookie=i to find out the case when compression is easier (secretcookie=7)

when the first character recovered the attacker repeats the attack for the second character

(trying all “secretcookie=7i” in the preamble)

TIME

• again based on compression but now on the server’s side (from the client to the server
compression might be disabled and CRIME fails)

• works if the server includes the client’s request in the response (most do!)

• works even if SOP is enabled. SOP does not control data with the tag img, so the attacker
can manipulate the length and therefore influence the number of blocks for block encryption

• the attacker requires malicious Javascript on the client’s browser

• the attacker tries to get the secret value sent from the server to the client

• mechanism:

→ as in CRIME, the request sends “secretvalue=x” where x varies

→ the response is compressed, so it takes either “secretvalue=” or “secretvalue=x”

→ the length manipulated so that either one or two packets are sent – connection specific
data must be used: Maximum Transmission Unit

→ RTT (round trip time) measured

• independent on the browser, it is not an implementation attack!

• countermeasure: restrict displaying images

BREACH

Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext

• attack against HTTP compression and not TLS compression as in case of CRIME

• a victim visits attacker-controlled website (phishing etc).

• force victim’s computer to send multiple requests to the target website.

• check sizes of responses

• requirements: application supports http compression, user’s input in the response, sensitive

data in the response

• countermeasures:

→ disabling compression

→ hiding length (randomizing the length of the output – it makes the attacks only harder

if the attack can be repeated many times)

→ no secrets in the same response as the user’s data

→ masking secret: instead of S send R||S ⊕R for random R (fresh in each response)

→ trace behaviour of requests and warn the user

POODLE (2014)

in SSL v.3.0 using technique from BEAST:

− padding is not covered by MAC so the attacker can manipulate it

− padding non-deterministic: padding 1 to L bytes (L= block length, say 16), the last byte
denotes the number of preceding padding random bytes

− encrypted POST request:

POST /path Cookie: name=value... 〈r\n\r\n〉 body ||20-byte MAC||padding

− manipulations such that:

− the padding fills the entire block (encrypted to Cn)

− the last unknown byte of the cookie appears as the last byte in an earlier block encrypted
into Ci

− attack: replace Cn by Ci and forward to the server

usually reject

accept if DecK(Ci)[15]⊕Cn−1[15] = 15, thereby Pi[15] = 15⊕Cn−1[15]⊕Ci−1[15]

proceed in this way byte by byte

− downgrade dance: provoke lower level of protection by creating errors say in TLS 1.0, and
create connection with SSL v3.0

− the attack does not work with weak (!) RC4 because of no padding

Weaknesses of RC4

• known weaknesses:

→ the first 257 bytes of encryption strongly biased, ≈200 bytes can be recovered if ≈232
encryptions of the same plaintext available

simply gather statistics as in case of Ceasar cipher

→ at some positions (multiplies of 256) if a zero occurs, then the next position more likely

to contain a zero

• broadcast attack: force the user to encrypt the same secret repeatedly and close to the

beginning

• countermeasure: no secrets in the initial part!

TLS 1.2

differences with TLS 1.1 and TLS 1.0:

• explicit IV instead of implicit IV

• IDEA and DES 64bit removed

• MD5/SHA-1 is replaced with a suite specified hash function – SHA-256 for all TLS 1.2

suites, but in the future also SHA-3,

• digitally-signed element includes the hash algorithm used

• Verify_data length is no longer fixed length ⇒ TLS 1.2 can define SHA-256 based cipher

suites

• new encryption modes allowed: CCM, GCM

———————————————–

CCM encryption mode (Counter with CBC-MAC)

just to avoid patent threats (triggered by request to patent OCB mode - patented in USA,
exempt for general public license for non-commertial use)

Prerequisites: block cipher algorithm; key K; counter generation function; formatting function;
MAC length Tlen

Input: nonce N ; payload P of Plen bits; valid associated data A

Computation: Steps:

1. formatting applied to (N,A, P), result: blocks B0, ..., Br

2. Y0 :=EncK(B0)

3. for i=1 to r: Yi :=EncK(Bi⊕Yi−1)

4. T :=MSBTlen(Yr)

5. generate the counter blocks Ctr0,Ctr1, ...,Ctrm for m=Plen/128

6. for j=0 to m: Sj :=EncK(Ctrj)

7. S :=S1||...||Sm

8. C := (P ⊕MSBPlen(S))|| (T ⊕S0)

Decryption:

1. return INVALID, if Clen<Tlen

2. generate the counter blocks Ctr0,Ctr1, ...,Ctrm for m=Plen/128

3. for j=0 to m: Sj :=EncK(Ctrj)

4. S :=S1||...||Sm

5. P : =MSBClen(C)⊕MSBPlen(S)

6. T :=LSBTlen(C)⊕MSBTlen(S0)

7. If N , A or P invalid, then return INVALID, else reconstruct B0, ..., Br

8. recompute Y0, ..., Yr

9. if T =/ MSBTlen(Yr), then return INVALID, else return P .

properties:

− data length must be known in advance

− two passes

———————————————

GCM (The Galois/Counter Mode)

background:

• popular, as replacement for CBC mode (because of attacks presented) and weaknesses of

RC4 (forbidden in the current TLS)

• received fundamental critics already before standardization

• finally (April 2018) Google decided to remove it until April 2019

• operations over GF(2128), addition in the field represented by xor (⊕)

Computation: Steps:

1. H: =EncK(0
128)

2. Y0: =IV||0
311 if length of IV should be 96

or Y0: =GHASH(H, {}, IV)

3. Yi: =incr(Yi−1) for i=1, ..., n (counter computation)

4. Ci :=Pi⊕EncK(Yi) for i=1, ..., n− 1 (counter based encryption)

5. Cn
∗ :=Pn⊕MSBu(EncK(Yn)) (the last block need not to be full)

6. T :=MSBt(GHASH(H,A,C))⊕EncK(Y0)

Details of computation of the tag

GHASH(H,A,C)=Xm+n+1 where m is the length of authenticating information A, and:

Xi equals:

0 for i=0

(Xi−1⊕Ai) ·H for i=1, ...,m− 1

((Xi−1⊕ (Am
∗ ||0128−v)) ·H for i=m

(Xi−1⊕Ci) ·H for i=m+1, ...,m+n− 1

((Xm+n−1⊕ (Cm
∗ ||0128−u)) ·H for i=m+n

((Xm+n⊕ (len(A)|len(C))) ·H for i=m+n+1

Decryption:

1. H: =EncK(0
128)

2. Y0: =IV||0
311 if length of IV should be 96

or Y0: =GHASH(H, {}, IV)

3. T ′ :=MSBt(GHASH(H,A,C))⊕EncK(Y0) , is T =T ′?

4. Yi: =incr(Yi−1) for i=1, ..., n

5. Pi :=Ci⊕EncK(Yi) for i=1, ..., n

6. Pn
∗ :=Cn

∗⊕MSBu(EncK(Yn))

