
copyright: Mirosªaw Kutyªowski, Politechnika Wrocªawska

Security and Cryptography 2019

Mirosªaw Kutyªowski

IX. PRIVACY

Protection of personal data and GDPR

− declared as fundamental right in EU, but technically fundamental for cybersecurity

� identity theft e.g. for financial criminality

� mobbing, discrimination, social abuse

� lack of protection is a threat for economy and national security

Frameworks

− EU and European Economic Area, adopted by many countries, some recognized as equivalent
by EU

− Privacy Shield: https://www.privacyshield.gov/

− California Consumer Privacy Act

Privacy in communication

− one can hide payload communication

− it is not trivial how to hide who is communicating with whom

− this is a sensitive data

protection methods:

� broadcast channel

� token ring

� dining cryptographers -DC nets

� onion protocols and TOR

DC-nets

− protecting the source of a 1-bit message. One of cryptographers is sending a 0 or 1.

− protocol for 3 cryptographers sitting at a round table:

1 each pair of neighbors establish a shared bit at random

2 each cryptographer that is not transmitting computes XOR of the bits shared with the
neighbors,

3 the sender computes the same XOR but swaps it if the bit transmitted is 1

4 each cryptographer reveals his result

5 the message is the XOR of the bits published:

− if the message is 0, then each shared bit occurs twice:

(bAB� bBC)� (bBC� bCA)� (bCA� bAB)=0

− otherwise, one of the bits is swapped: e.g. we have

(bAB� bBC)� (bBC� bCA� 1)� (bCA� bAB)=1

Communication steganography

Idea: hiding data in innocent data transmitted (e.g. images, sound, protocol execution data)

steganography versus watermarking:

watermarking is not annoying but hard to remove, steganography is invisible

steganography in images

1. original picture taken � name: stego image

2. marking algorithm (maybe with a secret key) applied to message and the stego image

3. outcome transmitted/published

4. retreiving the covered message

invisibility: without a key impossible to decide whether there is a message hidden

typical applications: copyright protection, DRM,

Concrete techniques for image/video/audio steganography:

− changing LSB bits of gray scale

− JPEG encoding: cosinus transform, high frequency components are manipulated anyway for
compression

− other digital transforms

− echoing

− audio encoding: transformation and assigning coefficients to waves � manipulations of certain
coefficients undetectable for listeners

watermarking network flow:

− 1 based versus 0/1 based (in the first case the change is 1 no change encodes 0)

− all random parameters transmitted in clear may contain watermarks

− simple timing: interpacket delays, departure times

− mean balancing:

− 2d probes divided into two sets A and B.

− the expected values of A and B are the same with no watermarking

− changing the characteristics so that expected values differ in some direction (the direction
is the watermarked value)

− sources of mean balancing watermarks:

− interpacket delays

− interval centroid: divide into 2d intervals, in each compute mean arrival time

− interval counting: divide into 2d intervals, in each compute the number of packets

− size: packet size (harder if block encryption applied), object size (https, malicious Javascript
generating watermarked size data)

− network rate:

− one can influence it with dummy packets

− burst traffic (e.g. makes TOR useless in hiding routes)

− response times in transmission, packet order etc

Defense against watermarking network flow:

(sometimes problematic or illegal due to intelectual property rights)

i. compression

ii. transforms and random distortions

iii. stretching (Stirmark)

iv. printing and scanning, input to an analog device and digitalize again

effectiveness measured by relative entropy:

D(P1kP2)=
X

q2space
Pr1(q) � log

Pr1(q)
Pr2(q)

relative entropy of plaintexts and ciphertext should be smaller than some small �

Mixer

messages m1;m2; :::;mk go through a mixer A:

− message mi sent encrypted with the public key of A

Ci :=Enc(PKA;mi)

− A decrypts C1; :::; Ck and forwards them to their destinations

Conditions:

encryption might be secure but nevertheless one can link the ciphertexts with the decrypted texts:

− message size

− timing

So:

− all messages should have the uniform size

− A should collect them all, decrypt and send them in a random order

Onion Routing

an attempt to hide the sender and the destination of a message � hiding in a crowd of messages

onion creation:

an onion created for a route going through servers A;B;C; ::::; Z to the final destination Γ

O1=EncA(B;EncB(C;EncC(:::(EncZ(Γ;M))::::)))

(by encryption EncX we mean encryption with the public key of X)

onion processing:

− O1 sent from the origin machine to A,

− server A decrypts with its private key and gets B and

O2=EncB(C;EncC(:::(EncZ(Γ;M))::::))

− A sends O2 to B

− server B decrypts O2 with its private key and gets C and O3=EncC(:::(EncZ(Γ;M))::::)

− the process is continued in the same way . . .

− . . . until server Z finds Γ;M and forwards the message M to machine Γ

each processing steps is like peeling off one layer of an onion

Limitations

− idea: if two or more onions enter a server at the same time, get partially decrypted, then for-
warded, then it is impossible to say which incomming onion corresponds to which outcoming
onion - node mixing

− traffic analysis: assigning probabilities to permutations (�(i)= jmeans that the ith sender
has a message to the jth receiver)

− it is not enough to say that �(i)= j with ppb � 1

n
:

− let us assume that the adversary knows that � is a circular shift

− assume that the adversary gets extra knowledge:

− �if source i is talking to destination j, then i+1 is talking to destination j+1�

however, still Pr(�(i)= j)= 1

n

Question: necessary length of the onions?

analytical results for restricted case of n senders and n receivers, messages sent simultaneously:

− O(log2n) if the adversary has a full knowledge of the system (not likely to have a better
estimation unless ... big progres in math), assumption: uniform distribution for choosing
destinations

− O(log n) if the adversary can see only a constant fraction of nodes, assumption: sender i
may have non-uniform distribution of destination points

− it is easy to see that
(log n) is necessary

meaning of the results:

traffic analysis does not improve our prior knowledge in a significant way (e.g. if we know in
advance that source i always sends to destination j, then onions cannot hide this fact)

the guarantees are given in terms of total variation distance of two probability distributions:

k�; �k= 1

2

P
!2
 j�(!)− �(!)j, where
 is the set of all events

Problems with onions

− replay attacks: just send the same onion (or partially decrypted onion) for the 2nd time:
the same subonions will appear along the forwarding path

defense: universal reencryption, example based on ElGamal encryption:

− ciphertext of m:

(�r;m � gr; �s; gs) for r; s chosen at random

− renecryption:

1 choose �; � at random

2 replace (y1; y2; y3; y4) by (y1 � y3
�; y2 � y4�; y3

�; y4
�)

thereby we get (�r+�s;m � gr+�s; �s� ; gs�)

if order of the group is a prime number, then this is equivalent with choosing (�r
0
;m � gr 0;

�s
0
; gs

0
) for random r 0; s0

− local view: not all users have the same list of servers

then: long routes do not improve anonimity. Toy example:

− give user A a list of servers with 50% of servers used by nobody else

− no matter how long is the routing path designed by A, it is likely that close to destination
the path goes through a rogue server

− a few destinations available from this rogue server (50% of cases the rogue server sends
directly to the destination)

− an onion going through the rogue server originates from the attacked source

− timing at nodes: delays necessary

defense: collecting enough onions and flashing them at once. (slowdown!!!)

− sparse traffic means no protection

TOR

− free BSD licence

− connection based protocol, new connection established periodically (�10 minutes or so�)

− routes limited to 3 TOR nodes

− onion based forwarding the symmetric keys

i each node on the path learns only the predecessor and the successor

ii the path established step by step:

− after establishing a subpath X0;X1; ::::;Xk the subpath is used to send an encrypted
message over the channel to Xk stating that the next node is Xk+1.

− the sender and Xk+1 negotiate a new connection key via DH key exchange

iii after making a connection the message is encrypted symmetrically with the keys:

AESrelay1(AESrelay2(AESrelay3(m)))

each relay node removes one layer

iv the messages back to the sender: instead of decryption: encryption with keys shared with
the sender. The sender has to decrypt the onion

Problems:

− exit node knows the plaintext

− traffic correlation

− application level attacks

− Heartbleed - change of public keys, some clients use old keys,

Other issues:

− many authorities fight against TOR as it helps to escape the control

PSEUDONYMIZATION

Symmetric methods:

− hashing the identifier: pseudonym=Hash(identifier)

problem: it is impossible to compute the identifier from the pseudonym, however hashing all
possible identifiers and brute force reveals the link between the pseudonym and identifier

− encryption with a (secret) symmetric key: unlinkability, however the user cannot compute
the pseudonym himself and the owner of the secret key can link all pseudonyms

− hashing with a key: as above, the party holding the secret key has to perform brute force
to link back the pseudonym to the identifier

Asymmetric pseudonymization methods:

− based on Diffie Hellman Problem:

− a domain (service provider, database, etc) holds a pair of keys (d;D= gd)

− a user Alice holds a pair (x;X = gx)

− the pseudonym of Alice corresponding to D is gx�d , which is computed as Xd by the
domain manager, and Dx by the user

− nobody but the user and the domain manager can compute the pseudonym:

for a 3rd person deciding whether Xd corresponds to X in domain D requires solving
DDH Problem

− a variant based on domain and a central Authority:

− the key d is not known to the domain authority

− d=dA+ddomain, where dA is known by the authority and ddomain is known by the domain
manager

− steps of generating the pseudonym by the authority:

1 the Authority computes X 0 :=XdA and presents X 0 to the domain manager

2 the domain manager computes pseudonym as (X 0)ddomain

− linking a pseudonym with the starting public key is a reverse process but both the
domain manager and the Authority must participate in it

− a variant from German personal identity cards (Restricted Identification):

− pseudonym of a user with public key X = gx is Hash(Dx)

− pseudonym presentation: by the ID card over a secure channel,

− no proof that the pseudonym is correct

− but a smart card can create only one pseudonym per domain

− revocation: by computing Hash((XdA)ddomain) jointly by the Authority and the domain
manager and putting the result on the blacklist

− blacklisting a black sheep based on the domain pseudonym requires brute force and
recomputing all pseudonyms

− more flexibility, if pairing groups are available but be careful: DDH might be easy and so the
above methods do not work

Advantages and disadvantages of Restricted Identification:

− different pseudonyms generated automatically is

− user friendly

− makes re-identification based solely on data related to the pseudonym much harder

− problems:

− converting a pseudonym in domain D1 to a pseudonym in domain D2 might be hard or
infeasible, and require cooperation with the user and/or an authority

(problem area: moving pseudonymized medical records)

DATABASES and PRIVACY for QUERIES

the main problem is answering queries: does a query result disclose personal data?

Approach 1: anonymity set

− a query accepted if the number of record used to answer the query is at least k (and each
concerns a different person)

− the method is naive: the attack is to ask for two sets of records: one including Alice and one
excluding Alice to know the value for Alice

Approach 2: differential privacy

classify the algorithms (queries)

algorithm A satisfies �-differential privacy, if for any two databases D and D 0 that differ by
elimination of one record:

− for any subset S of the image of A:

Pr(A(D)2S)� e� �Pr(A(D 0)2S)

where the probability is over the random choices of A

Then:

− �=0 is the ideal for privacy, but the result does not depend on the database contents (noise)

− so it is necessary to find balance between privacy (� as small as possible) and information
in the response (� as big as possible)

Problem with outliers

with some records that have very different values it is hard to keep promise of differential privacy

solution: disregard them (as private data leak anyway) and concentrate on the rest

PSEUDONYMOUS SIGNATURES

Application areas:

− while having the pseudonyms, how to authenticate digital data? Digital signatures would
solve the problem

− implementing GDPR rights in practice: a data subject can authenticate the request (e.g.
for data rectification) in a database with pseudonyms by sending a request with a signature
corresponding to the pseudonym

BSI Pseudonymous Signature:

� keys:

− domain parameters DM and a pair of global keys (PKM ; SKM)

− public key PKICC for a group of eIDAS tokens, the private key SKICC known to the
issuer of eIDAS tokens

− assigning the private keys for a user:

the issuer chooses SKICC;2 at random, then computes SKICC;1 such that

SKICC= SKICC;1+ SKM � SKICC;2

− a sector (domain) holds private key SKsector and public key PKsector.

− a sector has revocation private key SKrevocation and public key PKrevocation

− sector specific identifiers IICC;1
sector and IICC;2

sector for the user:

IICC;1
sector=(PKsector)SKICC;1

IICC;2
sector=(PKsector)SKICC;2

� signing: with keys SKICC;1, SKICC;2 and IICC;1
sector and IICC;2

sector for PKsector and message m

i choose K1;K2 at random

ii compute

− Q1= gK1 �(PKM)K2

− A1=(PKsector)K1

− A2=(PKsector)K2

iii c=Hash(Q1; IICC;1
sector ; A1; IICC;2

sector ; A2;PKsector;m)

(variant parameters omitted here)

iv compute

− s1=K1− c � SKICC;1

− s1=K2− c � SKICC;2

v output (c; s1; s2)

� verification:

compute

− Q1=(PKICC)c � gs1 �(PKM)s2

− A1=(IICC;1sector)c � (PKsector)s1

− A2=(IICC;2sector)c � (PKsector)s2

− recompute c and check against the c from the signature

� why it works?

(PKICC)c � gs1 �(PKM)s2=(PKICC)c � gK1 �(PKM)K2 � g−c�SKICC;1 �(PKM)c�SKICC;2

=(PKICC)c � gK1 �(PKM)K2 � g−c�SKICC;1 �(g)−c�SKM �SKICC;2

=(PKICC)c � gK1 �(PKM)K2 � g−c�SKICC= gK1 �(PKM)K2=Q1

� there is a version without A1; A2 and the pseudonyms IICC;1
sector ; IICC;2

sector

� Problems:

− the authorities know the private keys (there is a way to solve it when the user gets two
pairs of keys on the device and takes their linear combination)

− breaking into just 2 devices reveals the system keys

− possible to create a trapdoor for enabling to link pseudonyms

− apart from SKICC= SKICC;1+ SKM � SKICC;2 there is a another relationship for
the user u

xu=SKICC;1+ su � SKICC;2

− xu and su are dedicated for user u - maybe not in the database but derived from a
secret key, say Z

− domain trapdoor: Tdomain;u=PKdomain
xu and su (it can be derived from Z alone)

− then one can conclude that nym1 and nym2 correspond to user u, if:

Tdomain;u= nym1 � nym2
su

ANONYMOUS CREDENTIALS

two commertial products (libraries): Idemix (IBM) and UProve (Microsoft)

some details concerning Idemix

components:

− actors: issuer, recipient, verifier, trusted party

− attributes: for each attribute there is: name, value and type. The types are int, string,
date, enum (enumeration). The attributes concern the recipient.

− credentials: given by the issuer to the recipient

i known (Ak): the issuer knows the value of an attribute

ii commited (Ac): the issuer knows a commitment to the attribute but not the commitment
itself

iii hidden (Ah): the attribute is completely hidden to the issuer

− keys:

− single master key for each user (m1)

− single master key for the Issuer � for creation of CL signatures

− pseudonyms:

− a single domain pseudonym for a user per domain: generated as as

domm1

where dom is the public key of a domain, and m1 is the user's master key

− pseudonyms are unlinkable

Cryptographic schemes used by Idemix

CL signatures:

− RSA group, special choice of primes: p=2p0+1, q=2q 0+1, where p0 and q 0 are primes

− choose at random quadratic residues: R1; :::; Rl; Z ; S

− public key: (n;R1; :::; Rl; Z ; S), private key: p; q (enabling computation of roots modn)

− security based on Strong RSA assumption: it is infeasibile to compute e-roots for e> 2

− signature for messages m1; ::::;ml:

− choose v at random and a prime e> 2 of length higher than each m1; ::::;ml

− A := ((Z /(Sv �
Q
Ri
mi))1/e

− the signature is (A; e; v)

− verification: check if

Z =Ae �Sv �
Y

Ri
mi ?

Issuing a certificate for values m1; :::;ml

− somewhat complicated since the Issuer can learn only some attributes to be signed

− method: a two-party protocol to compute CL signature of the Issuer, algorithm:

− issuer sends a challenge n1

− the user chooses v 0 at random and computes U := Sv
0 �

Q
Ri
mi apart from known

attributes

− the user creates a ZKP that U computed in this way, in particular that

− the user knows hidden attributes

− the user uses the same attributes as commited

− the issuer checks the ZKP proof

− the issuer chooses a random prime e and v 00

− the issuer computes

Q :=Z /(U �Sv 00 �
Q

knownmi
Rmi) and A :=Q1/e

− (A; e; v 00) sent to the user together with ZKP proof of corectness

− the user computes v := v 0+ v 00, checks the proof and validity of signature (A; e; v)

Presenting a credential

complicated: also involves proofs over encrypted values and the range of attributes. Some
attributes may be revealed, but some stay hidden. Moreover, the certificate must not be
revealed.

some details for verification of certificate without revealing it:

− values mie chosen for each hidden attribute mi, where i2Ar�
− the user chooses rA at random and randomizes (A; e; v):

− A0 :=A �SrA, v 0 := v− e � rA
− so called t-values computed:

− chosen at random: e;~ v~0

− Z~ := (A0)e~ �Sv 0~ �
Q
Rmif

− these t-values Z~ and t values from other proofs plus some other data are hashed to get
challenge c

− signatures components (s-values) are derived:

− ê := e~+ c � e
− v̂ 0 := v~0+ c � v 0

− m̂
i
:=mie + c �mi

Credential verification - based on recomputation of t-values and recomputing c.

Z~ recomputed as:

(A0)ê �
Q

i2Ar�Ri
mic �S v̂ 0/

�
ZQ

i2Ar�
Rmi

�c
(we remove some parts from Z, what is left must be raised to power c to eliminate the effect
of components c � e, c � v 0, c �mi when using the exponents ê, v̂ 0, m̂i

ranges have to be checked, etc

...

IDENTIFICATION

running wireless communication protocol may enable tracing a user.

Threats:

− explicit exchange of identifiers: an eavsdropper learns who is communicating with whom

− strong cryptographic proofs created during identification: can be misused for proving presence
to the third parties

elimination of explicit identifiers:

− at each communication round Alice and Bob create random nonce (nonces) for the next
round

− even more secure: if n is such a nonce, then Alice uses n0 where n0 is the same as n except
for one bit at a random position

deniability:

− the idea is that a transcript of a communication (including the answer from the Prover created
with his private key) can be simulated

consequence: a third party has no grounds to believe the communication transcript pre-
sented to him

− wrong example: challenge-response algorithm with digital signature:

1 the Verifier selects x at random and sends to the Prover

2 the Prover returns his signature s over x

unfortunately s can serve as a proof of the claim of the Verifier: �I have talked to Prover�
if x is a signature of the Verifier or somthing that only could be created by the Verifier

− good example: static Diffie-Hellman protocol

− good example: Stinson-Wu for Prover with the key pair (a;A= ga)

1 Verifier chooses x at random, computes X : =gx and Y :=Hash(Ax) and

sends X;Y to Prover

2 Prover computes Z :=Xa and aborts if Y =/ Hash(Z)

3 Prover sends Z

4 Verifier accepts iff Z =Ax

Stinson-Wu protocol

− Stinson-Wu does not create an oracle for DH Problem, Verifier must send a challege for
which somebody knows x

− it is not true that Verifier must know x:

− Eve creates correct X;Y as well as x encrypted with Hash(Z)

− Eve sends these data to Verifier in advance

− somewhat later: Verifier sends X;Y to Prover

− Prover computes Z :=Xa and aborts if Y =/ Hash(Z)

− Prover sends Z

− Verifier computes Hash(Z) and uses it as a key to decrypt and derive x

− Verifier accepts iff Z =Ax

− Verifier returns x to Eve as a proof of interaction with Prover

