
copyright: Mirosªaw Kutyªowski, Politechnika Wrocªawska

Security and Cryptography 2020

Mirosªaw Kutyªowski

grading criteria:

� up to 50 points from lecture (exam), up to 50 points from dr Kubiak (project...)

� the lecture at least 30% ot of 50 points must be earned to pass

� sum of points ) the final grade, 3.0: �40 points , 5.0 � 80 points

� exam requires problem solving, memorizing facts is unnecessary

skills to be learned: developing end-to-end security systems, flawless in the real sense!

presence: obligatory during the lectures

exam date: distributed over milestones

place: 11:15-13 Tuesday, 11:15-13 Friday, MS Teams



milestones:

� after each �chapter� consisting of a specific topic some verification of skills of the students

� possible verification forms:

i exercises/assignments by dr Kubiak

ii assignment by myself (some concrete task/problem to be solved at home and returned
within e.g. 1 week)

iii a test with some online tool during the lecture

iv a problem to be solved on paper, jpeg to be returned within, say, 15 minutes

� IPR taken very seriously



Online materials:

� available on my webpage

https://kutylowski.im.pwr.wroc.pl/lehre/cs20/

� ePortal will link to the webpage, additionally it may be used for 1-1 communiaction witht
he students (as it keeps a history of each conversation), status on 1.10: adding students via
JSOS yet unavailable

� tests � no decision about the platform yet. Subject to: stability and reliability of these tools

� no videos (decision of university authorities: the lectures must be life)



Contact:

� during the lecture: mute yourself, when having a question please unmute and switch on your
video (the group is small enough to do it)

� email: yes but we shall try to move standard exchange of messages to ePortal

� the phone at Politechnika � no! I am in the high risk group and . . .

� ePortal � hopefully

� think about a chat group with some communicator. Any proposal? Please let me know your
preference. Remember about personal data protection etc.: I had a class in summer school
in Xidian: we have used the WeChat tool.



I. FAILURE EXAMPLES TO LEARN FROM
I.1. PKI for Signing Digital Documents

PKI - Public Key Infrastructure

� strong authentication of digital documents with digital signatures seems to be possible

� in fact we get an evidence that the holder of a private key has created a signature

� who holds the key? PKI has to provide a certified answer to this question

� PKI is not a cryptographic solution - it is an organizational framework (using some crypto
tools)

PKI, X.509 standard

� a certificate binds a public key with an ID of its alleged owner,

� a couple of other fields, like validity date, key usage, certification policy, ...

� certificate signed by CA (Certification Authority)

� tree of CA's (or a directed acyclic graph), with roots as �roots of trust�

� status of a certificate may change - revocation

� checking status methods: CRL, OCSP



reasons for PKI failure:

a nice concept of digital signatures but

1. big infrastructure required:

−. substantial cost and effort

−. long time planning needed (so possible in China, but not in Europe)

−. unclear financial return

2. scope of necessary coordination,

−. in order to work must be designed at least for the Common Market

−. example of killing the concept: link to certification policy in Polish



3. lack of interoperability (sometimes as business goal)

−. companies make efforts to eliminate competition

−. standarization may be focused on securing market shares

−. a long process . . .

4. necessary trust in roots

−. how do you know that the root is honest?

5. registration: single point of fraud, (e.g. with fake breeding documents)

−. once you get a certificate you may forge signatures

6. responsibility of CA

−. fiancial risk � based on risk or responsibility

7. cost - who will pay? For the end user the initial cost is too high.

−. certificates are too expensive for just a few signatures (at least initially)

8. legal strength of signatures

−. if scheme broken or signing devices turn out to be insecure you are anyway responsible
for the signatures. After revocation only the new signatures invalid



9. unsolved problem of revocation: possible to check the status in the past but not now

reason: mismatch of requirements and interests with the designed solution

� . . .but there nothing one can do about it.� � this is false:

� Smart-ID project, Estonia (clever RSA-like solution, mediated signatures, no CRL, OCSP
needed)

� SPKI idea (source centric certification), suicide notes, certificates of health



I.2. Clickjacking on Android

Overlay mechanism:

� apps are separated in their sandboxes - security design mechanism

� all apps display informations on the screen at the same time - they are overlays

� overlays:

− require Android permissions

− clickable or paththrough

− opaque or transparent

− combining: parameter � defines weights: for each color of RGB the new pixel value is

old ��+new � (1−�)



� basic clickjacking:

− on top an opaque overlay with something innocent (game...)

− button is in fact a batton but the overlay is paththrough at this place

− below is an unvisible button of an attacked app

defense: Google's �obscure flag� - an app checks if at the momnet of clicking there is an
overlay above it

� context-hiding clickjacking: overlay covers everything but not the button

defense: Google's �hide overlays� (applicable only in case of settings etc as the users like
overlays)

� examples:

! Google play: after installing the app it asks for �open app�, but acceptance is for installing
and opening something else

! Browser: cover the context and make the user click (e-voting?)

! gmail: prepare a message, cover it with overlay and ask for accepting �send� button

! whatsapp, wechat: send messages, send SMS to chosen destinations (and learn attacked
SIM subscriber number)



! Google Authenticator: �long click� copies a token to clipboard (and makes it available to
other apps)

! Facebook, Tweeter: unprotected, possibilities to insert likes, send tweets, ...

! Lookout Mobile Security: 3 clicks and anti-virus protection disabled

� remedy?

− no effective protection mechanism known

− architecture separates apps so it is impossible to ask what the other apps are showing

− some overlays must be tolerated due to expectations of the users

− pressure to run security critical apps (banking...)



Clickshield:

− requires minor changes in the Android framework

− concentrates on the central region (as on margin no critical buttons observed)

− attempts to check whether between the pixel of target app and the screen final render
pixel there is a nonmalicious relationship

− � render: fr = round(� � ov + (1 − �) � ta) where ta=target app pixel value,
ov=overlay . . . , fr=final render pixel value

− given fr and ta we do not know � and ov, but

− choose two points and assume that overlay is uniform. Then solve for �:

fr1=� � ov+(1−�) � ta1

fr2=� � ov+(1−�) � ta2

− use this fixed � to estimate ov over the whole screen. the outcome should be
unifrom in case of uniform verlays or those informing on margin (like whatsapp ne
messages)

Otherwise expect a context switching.



I.2. Easy Fishing on Android

� mobile password managers:

− associate app (package name) with a domain name

− for a domain name associated with the app insert the user's credentials when the app
accesses this URL

− credentials are related to the domain name (facebook.com, etc) and not to the app

− in fact: improves protection against fishing (difference between facebook and faceb00k
detected, a human may make a mistake)

� Instant Apps: instead of downloading the whole app fetch only a small app that emulates
the full version with accessing an URL

− gets a full control over the screen � e.g. it may hide browser's security information

� limitations: at most one app with the same package name on an Android device, and at
most one in Play Store



� attack:

− create an app

− choose the package name so that the mapping points to the attacked domain

− include developer's URL for Instant App purposes (it is not checked by the Play Store)

− lure the user to run Instant App

! the credentials will be included by the Password Manager

! the information will go to the developer's URL

! Instant App will show something different on the screen (information from password
manager need not to be visible, browser information will be covered as well)

! the user should dislike the app and consequently the app will not be downloaded (no
traces of forgery)



� mappings:

− most important associations on a kind of whitelist

− one-to-one would be more secure but frequently many apps to one domain

− (insecure) heuristics:

1 Keeper: finds a corresponding entry on play.google.com and takes �app developer
website field� , it autosuggests this name to the user,

attacks: write malicious app �developer website field�

2 Dashlane: hardcopied 81 mappings, rest: autosuggestion heuristic based on at least
3 matching characters: xxx.face.yyy will be mapped to facebook.com

attack: use similar package names

3 Lastpass: translates directly (aaa.bbb.ccc to bbb.aaa), if not existing then consult
from crowdsourced mapping (distributed database created by users � where it is easy
to inject something)

4 1Password: does not provide mapping but presents suggestions and enables the user
� a human to choose (and confuse FACEB00K with FACEBOOK)

5 Google Smart Lock � burden of mapping to the developer (at the time not auto-
mated process) based on Digital Asset Links (on the website a list of permitted apps,
authenticated with hashes of the signing key)



Idea - our dream situation:

a security solution should work even if

! the designer is lazy, stupid, malicious, . . .

! the components are malicious, faulty, . . .

! crypto in fact has been broken by bad guys

! there are trapdoors

Today

we are focused on

! security assumptions (probably invalid)

! trust to . . .

! standard situations

Catacrypt don't wait for quantum computer, catastrophy is already there due to other
reasons


